English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au+Au collisions

STAR Collaboration, Adam, J., Schmitz, N., Seyboth, P., & et al. (2019). Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au+Au collisions. Physical Review C, 100, 014902. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2019-288.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
STAR Collaboration1, Author
Adam, J.1, Author
Schmitz, N.1, Author
Seyboth, P.1, Author
et al.1, Author
Affiliations:
1Max Planck Institute for Physics, Max Planck Society and Cooperation Partners, ou_2253650              

Content

show
hide
Free keywords: STAR
 Abstract: We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at \sNN~= 7.7-200 GeV. Within the available acceptance of $|\eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at \sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations and provide new insights on the energy dependence of baryon-strangeness correlations.

Details

show
hide
Language(s):
 Dates: 2019
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review C
  Abbreviation : Phys.Rev.C
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 100 Sequence Number: - Start / End Page: 014902 Identifier: -