English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  NetKet: A machine learning toolkit for many-body quantum systems

Carleo, G., Choo, K., Hofmann, D., Smith, J. E. T., Westerhout, T., Alet, F., et al. (2019). NetKet: A machine learning toolkit for many-body quantum systems. SoftwareX, 10: 100311. doi:10.1016/j.softx.2019.100311.

Item is

Files

show Files
hide Files
:
1-s2.0-S2352711019300974-main.pdf (Publisher version), 538KB
Name:
1-s2.0-S2352711019300974-main.pdf
Description:
This is an open access article under the CCBY license.
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2019
Copyright Info:
© the Author(s). Published by Elsevier B.V.

Locators

show
hide
Locator:
https://dx.doi.org/10.1016/j.softx.2019.100311 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Carleo, G.1, Author
Choo, K.2, Author
Hofmann, D.3, 4, Author           
Smith, J. E. T.5, Author
Westerhout, T.6, Author
Alet, F.7, Author
Davis, E. J.8, Author
Efthymiou, S.9, Author
Glasser, I.9, Author
Lin, S.-H.10, Author
Mauri, M.1, 11, Author
Mazzola, G.12, Author
Mendl, C. B.13, Author
van Nieuwenburg, E.14, Author
O’Reilly, O.15, Author
Théveniaut, H.7, Author
Torlai, G.1, Author
Vicentini, F.16, Author
Wietek, A.1, Author
Affiliations:
1Center for Computational Quantum Physics, Flatiron Institute, ou_persistent22              
2Department of Physics, University of Zurich, ou_persistent22              
3International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266714              
4Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_persistent22              
5Department of Chemistry, University of Colorado Boulder, ou_persistent22              
6Institute for Molecules and Materials, Radboud University, ou_persistent22              
7Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, ou_persistent22              
8Department of Physics, Stanford University, Stanford, ou_persistent22              
9Max-Planck-Institut für Quantenoptik, ou_persistent22              
10Department of Physics, T42, Technische Universität München, ou_persistent22              
11Dipartimento di Fisica, Università degli Studi di Milano, ou_persistent22              
12Theoretische Physik, ETH Zürich, ou_persistent22              
13Technische Universität Dresden, Institute of Scientific Computing, ou_persistent22              
14Institute for Quantum Information and Matter, California Institute of Technology, ou_persistent22              
15Southern California Earthquake Center, University of Southern California, ou_persistent22              
16Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, ou_persistent22              

Content

show
hide
Free keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learning
 Abstract: We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics.

Details

show
hide
Language(s): eng - English
 Dates: 2019-08-092019-03-282019-08-122019-092019-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.softx.2019.100311
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : We acknowledge support from the Flatiron Institute of the Simons Foundation. J.E.T.S. gratefully acknowledges support from a fellowship through The Molecular Sciences Software Institute under NSF Grant ACI1547580. H.T. is supported by a grant from the Fondation CFM pour la Recherche. S.E. and I.G. are supported by an ERC Advanced Grant QENOCOBA under the EU Horizon2020 program (grant agreement 742102) and the German Research Foundation (DFG) under Germany’s Excellence Strategy through Project No. EXC-2111 - 390814868 (MCQST).
Grant ID : 742102
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: SoftwareX
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 10 Sequence Number: 100311 Start / End Page: - Identifier: ISSN: 2352-7110
CoNE: https://pure.mpg.de/cone/journals/resource/2352-7110