hide
Free keywords:
germanium, high-pressure synthesis, strontium, Zintl phase
Abstract:
The binary strontium germanide SrGe6 was synthesized at high-pressure high-temperature conditions of approximately 10 GPa and typically 1400 K before quenching to ambient conditions. At ambient pressure, SrGe6 decomposes in a monotropic fashion at T = 680(10) K into SrGe2 and Ge, indicating its metastable character. Single-crystal X-ray diffraction data indicate that the compound SrGe6 adopts a new monoclinic structure type comprising a unique three-dimensional framework of germanium atoms with unusual cages hosting the strontium cations. Quantum chemical analysis of the chemical bonding shows that the framework consists of three- A nd four-bonded germanium atoms yielding the precise electron count Sr[(4bGe0]4[(3b)Ge-]2 in accordance with the 8-N rule and the Zintl concept. Conflicting with that, a pseudo-gap in the electronic density of states appears clearly below the Fermi level, and elaborate bonding analysis reveals additional Sr-Ge interactions in the concave coordination polyhedron of the strontium atoms. © 2020 Ulrich Schwarz et al., published by De Gruyter, Berlin/Boston.