Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Mechanical changes of peripheral nerve tissue microenvironment and their structural basis during development

Rosso, G., & Guck, J. (2019). Mechanical changes of peripheral nerve tissue microenvironment and their structural basis during development. APL Bioengineering, 3(3): 036107. doi:10.1063/1.5108867.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rosso, Gonzalo1, 2, Autor
Guck, Jochen1, 3, 4, Autor           
Affiliations:
1Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden , Tatzberg 47/49, 01307 Dresden, Germany, ou_persistent22              
2Institute of Physiology II, University of Münster , Robert-Koch-Str. 27b, 48149 Münster, Germany, ou_persistent22              
3Guck Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164416              
4Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164414              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Peripheral nerves are constantly exposed to mechanical stresses associated with body growth and limb movements. Although some aspects of these nerves' biomechanical properties are known, the link between nerve biomechanics and tissue microstructures during development is poorly understood. Here, we used atomic force microscopy to comprehensively investigate the elastic modulus of living peripheral nerve tissue cross sections ex vivo at distinct stages of development and correlated these elastic moduli with various cellular and extracellular aspects of the underlying histological microstructure. We found that local nerve tissue stiffness is spatially heterogeneous and evolves biphasically during maturation. Furthermore, we found the intracellular microtubule network and the extracellular matrix collagens type I and type IV as major contributors to the nerves' biomechanical properties, but surprisingly not cellular density and myelin content as previously shown for the central nervous system. Overall, these findings characterize the mechanical microenvironment that surrounds Schwann cells and neurons and will further our understanding of their mechanosensing mechanisms during nerve development. These data also provide the design of artificial nerve scaffolds to promote biomedical nerve regeneration therapies by considering mechanical properties that better reflect the nerve microenvironment.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-05-032019-09-052019-09-17
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1063/1.5108867
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: APL Bioengineering
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Melville, NY : AIP Publishing
Seiten: 12 Band / Heft: 3 (3) Artikelnummer: 036107 Start- / Endseite: - Identifikator: ISSN: 2473-2877
CoNE: https://pure.mpg.de/coneABPID9