Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation

Elgabarty, H., Kampfrath, T., Bonthuis, D. J., Balos, V., Kaliannan, N. K., Loche, P., et al. (2020). Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Science Advances, 6(17): eaay7074. doi:10.1126/sciadv.aay7074.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2003.08651.pdf (Preprint), 2MB
Name:
2003.08651.pdf
Beschreibung:
File downloaded from arXiv at 2020-03-31 10:22
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
eaay7074.full.pdf (Verlagsversion), 1021KB
Name:
eaay7074.full.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Elgabarty, Hossam1, Autor
Kampfrath, Tobias2, 3, Autor           
Bonthuis, Douwe Jan3, Autor
Balos, Vasileios2, Autor           
Kaliannan, Naveen Kumar1, Autor
Loche, Philip3, Autor
Netz, Roland R.3, Autor
Wolf, Martin2, Autor           
Kühne, Thomas D.1, Autor
Sajadi, Mohsen2, Autor           
Affiliations:
1Department of Chemistry, University of Paderborn, Paderborn, Germany, ou_persistent22              
2Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
3Department of Physics, Freie Universität Berlin, Berlin, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Condensed Matter, Soft Condensed Matter, cond-mat.soft, Physics, Chemical Physics, physics.chem-ph
 Zusammenfassung: Energy dissipation in water is very fast and more efficient than in many other liquids. This behavior is commonly attributed to the intermolecular interactions associated with hydrogen bonding. Here, we investigate the dynamic energy flow in the hydrogen-bond network of liquid water by a pump-probe
experiment. We resonantly excite intermolecular degrees of freedom with
ultrashort single-cycle terahertz pulses and monitor its Raman response. By using ultrathin sample-cell windows, a background-free bipolar signal whose
tail relaxes mono-exponentially is obtained. The relaxation is attributed to the molecular translational motions, using complementary experiments, force-field and ab initio molecular dynamics simulations. They reveal an initial coupling of the terahertz electric field to the molecular rotational
degrees of freedom whose energy is rapidly transferred, within the excitation pulse duration, to the restricted-translational motion of neighboring molecules. This rapid energy transfer may be rationalized by the strong anharmonicity of the intermolecular interactions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-03-192020-03-242019-07-112020-01-292020-04-24
 Publikationsstatus: Online veröffentlicht
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
  Andere : Sci. Adv.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington : AAAS
Seiten: 8 Band / Heft: 6 (17) Artikelnummer: eaay7074 Start- / Endseite: - Identifikator: ISSN: 2375-2548
CoNE: https://pure.mpg.de/cone/journals/resource/2375-2548