English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Momentum-resolved superconducting energy gaps of Sr2RuO4 from quasiparticle interference imaging

Sharma, R., Edkins, S. D., Wang, Z., Kostin, A., Sow, C., Maeno, Y., et al. (2020). Momentum-resolved superconducting energy gaps of Sr2RuO4 from quasiparticle interference imaging. Proceedings of the National Academy of Sciences of the United States of America, 117(10), 5222-5227. doi:10.1073/pnas.1916463117.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sharma, Rahul1, Author
Edkins, Stephen D.1, Author
Wang, Zhenyu1, Author
Kostin, Andrey1, Author
Sow, Chanchal1, Author
Maeno, Yoshiteru1, Author
Mackenzie, Andrew P.2, Author           
Davis, J. C. Séamus3, Author           
Madhavan, Vidya1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863463              
3J. C. Séamus Davis, Max Planck Fellow, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_3266851              

Content

show
hide
Free keywords: Quasiparticle interference, Strontium ruthenate, Superconducting energy gaps, article, crystal, thermal conductivity
 Abstract: Sr2RuO4 has long been the focus of intense research interest because of conjectures that it is a correlated topological superconductor. It is the momentum space (k-space) structure of the superconducting energy gap Δi(k) on each band i that encodes its unknown superconducting order parameter. However, because the energy scales are so low, it has never been possible to directly measure the Δi(k) of Sr2RuO4. Here, we implement Bogoliubov quasiparticle interference (BQPI) imaging, a technique capable of high-precision measurement of multiband Δi(k). At T = 90 mK, we visualize a set of Bogoliubov scattering interference wavevectors qj : j = 1 − 5 consistent with eight gap nodes/minima that are all closely aligned to the (±1, ± 1) crystal lattice directions on both the α and β bands. Taking these observations in combination with other very recent advances in directional thermal conductivity [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)], temperature-dependent Knight shift [A. Pustogow et al., Nature 574, 72–75 (2019)], time-reversal symmetry conservation [S. Kashiwaya et al., Phys. Rev B, 100, 094530 (2019)], and theory [A. T. Rømer et al., Phys. Rev. Lett. 123, 247001 (2019); H. S. Roising, T. Scaffidi, F. Flicker, G. F. Lange, S. H. Simon, Phys. Rev. Res. 1, 033108 (2019); and O. Gingras, R. Nourafkan, A. S. Tremblay, M. Côté, Phys. Rev. Lett. 123, 217005 (2019)], the BQPI signature of Sr2RuO4 appears most consistent with Δi(k) having dx2−y2 (B1g) symmetry. © 2020 National Academy of Sciences. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2020-02-242020-02-24
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.1916463117
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 117 (10) Sequence Number: - Start / End Page: 5222 - 5227 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230