English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The evolutionary biology of dance without frills

Ravignani, A., & Cook, P. F. (2016). The evolutionary biology of dance without frills. Current Biology, 26(19), R878-R879. doi:10.1016/j.cub.2016.07.076.

Item is

Files

show Files
hide Files
:
Ravignani_Cook_2016_Evolutionary biology of dance without frills.pdf (Publisher version), 295KB
Name:
Ravignani_Cook_2016_Evolutionary biology of dance without frills.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
Ravignani_Cook_2016suppl_Evolutionary biology of dance without frills..pdf (Supplementary material), 214KB
Name:
Experimental Procedures and Two Tables
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ravignani, Andrea1, Author           
Cook, Peter F., Author
Affiliations:
1Vrije Universiteit Brussel, Brussels, Belgium, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Recently psychologists have taken up the question of whether dance is reliant on unique human adaptations, or whether it is rooted in neural and cognitive mechanisms shared with other species 1, 2. In its full cultural complexity, human dance clearly has no direct analog in animal behavior. Most definitions of dance include the consistent production of movement sequences timed to an external rhythm. While not sufficient for dance, modes of auditory-motor timing, such as synchronization and entrainment, are experimentally tractable constructs that may be analyzed and compared between species. In an effort to assess the evolutionary precursors to entrainment and social features of human dance, Laland and colleagues [2] have suggested that dance may be an incidental byproduct of adaptations supporting vocal or motor imitation — referred to here as the ‘imitation and sequencing’ hypothesis. In support of this hypothesis, Laland and colleagues rely on four convergent lines of evidence drawn from behavioral and neurobiological research on dance behavior in humans and rhythmic behavior in other animals. Here, we propose a less cognitive, more parsimonious account for the evolution of dance. Our ‘timing and interaction’ hypothesis suggests that dance is scaffolded off of broadly conserved timing mechanisms allowing both cooperative and antagonistic social coordination.

Details

show
hide
Language(s): eng - English
 Dates: 2016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.cub.2016.07.076
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Current Biology
  Other : Curr. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Cell Press
Pages: - Volume / Issue: 26 (19) Sequence Number: - Start / End Page: R878 - R879 Identifier: ISSN: 0960-9822
CoNE: https://pure.mpg.de/cone/journals/resource/954925579107