English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism

Preiner, M., Igarashi, K., Muchowska, K. B., Yu, M., Varma, S. J., Kleinermanns, K., et al. (2020). A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nature Ecology & Evolution, 4(4), 534-542. doi:10.1038/s41559-020-1125-6.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Preiner, Martina1, Author
Igarashi, Kensuke2, Author
Muchowska, Kamila B.3, Author
Yu, Mingquan4, Author           
Varma, Sreejith J.5, Author
Kleinermanns, Karl6, Author
Nobu, Masaru K.2, Author
Kamagata, Yoichi2, Author
Tüysüz, Harun4, Author           
Moran, Joseph3, Author
Martin, William F.1, Author
Affiliations:
1Institute for Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany, ou_persistent22              
2Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan, ou_persistent22              
3ISIS (UMR 7006), University of Strasbourg, CNRS, Strasbourg, France, ou_persistent22              
4Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950290              
5Charité—Universitätsmedizin Berlin, Laboratory ‘Biochemistry and System Biology of the Metabolism’, Berlin, Germany, ou_persistent22              
6Institute for Physical Chemistry, University of Düsseldorf, Düsseldorf, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth’s crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals—greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)—catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents.

Details

show
hide
Language(s): eng - English
 Dates: 2019-07-092020-01-232020-03-022020-04-01
 Publication Status: Published in print
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41559-020-1125-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Ecology & Evolution
  Abbreviation : Nat. Ecol. Evol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 4 (4) Sequence Number: - Start / End Page: 534 - 542 Identifier: ISSN: 2397-334X
CoNE: https://pure.mpg.de/cone/journals/resource/2397-334X