Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism

Preiner, M., Igarashi, K., Muchowska, K. B., Yu, M., Varma, S. J., Kleinermanns, K., et al. (2020). A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nature Ecology & Evolution, 4(4), 534-542. doi:10.1038/s41559-020-1125-6.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Preiner, Martina1, Autor
Igarashi, Kensuke2, Autor
Muchowska, Kamila B.3, Autor
Yu, Mingquan4, Autor           
Varma, Sreejith J.5, Autor
Kleinermanns, Karl6, Autor
Nobu, Masaru K.2, Autor
Kamagata, Yoichi2, Autor
Tüysüz, Harun4, Autor           
Moran, Joseph3, Autor
Martin, William F.1, Autor
Affiliations:
1Institute for Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany, ou_persistent22              
2Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan, ou_persistent22              
3ISIS (UMR 7006), University of Strasbourg, CNRS, Strasbourg, France, ou_persistent22              
4Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950290              
5Charité—Universitätsmedizin Berlin, Laboratory ‘Biochemistry and System Biology of the Metabolism’, Berlin, Germany, ou_persistent22              
6Institute for Physical Chemistry, University of Düsseldorf, Düsseldorf, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth’s crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals—greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)—catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-07-092020-01-232020-03-022020-04-01
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41559-020-1125-6
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Ecology & Evolution
  Kurztitel : Nat. Ecol. Evol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 4 (4) Artikelnummer: - Start- / Endseite: 534 - 542 Identifikator: ISSN: 2397-334X
CoNE: https://pure.mpg.de/cone/journals/resource/2397-334X