English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Iron sulfide formation in young and rapidly-deposited permeable sands at the land-sea transition zone

Seibert, S. L., Böttcher, M. E., Schubert, F., Pollmann, T., Giani, L., Tsukamoto, S., et al. (2019). Iron sulfide formation in young and rapidly-deposited permeable sands at the land-sea transition zone. Science of the Total Environment, 649, 264-283.

Item is

Files

show Files
hide Files
:
seibert2018.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
seibert2018.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Seibert, Stephan L., Author
Böttcher, Michael E., Author
Schubert, Florian, Author
Pollmann, Thomas, Author
Giani, Luise, Author
Tsukamoto, Sumiko, Author
Frechen, Manfred, Author
Freund, Holger, Author
Waska, Hannelore1, 2, Author           
Simon, Heike2, Author
Holt, Tobias, Author
Greskowiak, Janek, Author
Massmann, Gudru, Author
Affiliations:
1Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481705              
2ICBM MPI Bridging Group for Marine Geochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society, Celsiusstraße 1, 28359 Bremen, DE, ou_2481703              

Content

show
hide
Free keywords: -
 Abstract: Organic-poor, permeable quartz sands are often present at land-sea transition zones in coastal regions. Yet, the biogeochemical cycles of carbon, sulfur, and iron are not well studied here. The aim of this work was, therefore, to improve our understanding regarding the chemical processes in these prominent coastal sediments. A 10 m core was collected at a dune base of the barrier island Spiekeroog, Germany, for this purpose. Additionally, groundwater was sampled from a multi-level well for one year to record seasonal hydrochemical variations. Methods included the analyses of geochemical (total carbon, total inorganic carbon, reactive iron, total sulfur, reduced inorganic sulfur) and hydrochemical parameters (field parameters, major ions, DOC, and molecular compositions of DOM), as well as stable sulfur isotopes (δ34S-sulfate, -sulfide, -total reduced inorganic sulfur). Moreover, optically stimulated luminescence (OSL) dating was applied. Results show that the core sediments are very young (<500 a) and were rapidly deposited. They are characterized by remarkably low contents of organic carbon (<0.1% dw.), reactive iron (~10 mmol/kg), and iron sulfides (<3 mmol/kg). Groundwater salinities were low in the top core sediments and increased at depth during most times of the year. However, the sampling site is subject to (seasonally) varying salinities, which could be linked to the biogeochemical cycles. For instance, the infiltration of seawater-derived labile DOM during inundation events drives microbial respiration besides sedimentary organic matter. Oxygen and nitrate were the dominant electron acceptors for the decomposition of organic matter in near-surface groundwater, while sulfate reduction was constrained to the lower brackish sediments. Here, authigenic pyrite formation was inferred based on the detection of dissolved sulfide, intact pyrite framboids, and matching stable sulfur isotope signatures of dissolved and solid sulfides. We concluded that the extremely low organic carbon contents limit pyrite formation in the organic-poor, permeable quartz sands.

Details

show
hide
Language(s): eng - English
 Dates: 2018-08-232019-02-01
 Publication Status: Issued
 Pages: 20
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science of the Total Environment
  Abbreviation : Sci. Total Environ.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 649 Sequence Number: - Start / End Page: 264 - 283 Identifier: ISSN: 0048-9697
CoNE: https://pure.mpg.de/cone/journals/resource/954925457007