English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Magnetosphere of an orbiting neutron star

Carrasco, F., & Shibata, M. (2020). Magnetosphere of an orbiting neutron star. Physical Review D, 101: 063017. doi:10.1103/PhysRevD.101.063017.

Item is

Files

show Files
hide Files
:
2001.04210.pdf (Preprint), 5MB
Name:
2001.04210.pdf
Description:
File downloaded from arXiv at 2020-04-07 21:21
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevD.101.063017.pdf (Publisher version), 7MB
Name:
PhysRevD.101.063017.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Carrasco, Federico, Author
Shibata, Masaru1, Author           
Affiliations:
1Computational Relativistic Astrophysics, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_2541714              

Content

show
hide
Free keywords: Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE,General Relativity and Quantum Cosmology, gr-qc
 Abstract: We conduct force-free simulations of a single neutron star undergoing orbital
motion in flat spacetime, mimicking the trajectory of the star about the center
of mass on a compact binary system. Our attention is focused on the kinetic
energy being extracted from the orbit by the acceleration of the magnetic
dipole moment of the neutron star, and particularly, on how this energy gets
distributed within its surrounding magnetosphere. A detailed study of the
resulting magnetospheric configurations in our setting is presented,
incorporating as well the effects due to neutron star spin and the misalignment
of the magnetic and orbital axes. We find many features resembling those of
pulsar magnetospheres for the orbiting neutron star --even in the absence of
spin--, being of particular interest the development of a spiral current sheet
that extends beyond the light cylinder. Then, we use recent advances in pulsar
theory to estimate electromagnetic emissions produced at the reconnection
regions of such current sheets.

Details

show
hide
Language(s):
 Dates: 2020-01-132020-02-192020
 Publication Status: Issued
 Pages: 16 pages, 13 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 101 Sequence Number: 063017 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258