English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo

Gaiser, M. R., Lämmermann, T., Feng, X., Igyarto, B. Z., Kaplan, D. H., Tessarollo, L., et al. (2012). Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109, E889-E897. doi:10.1073/pnas.1117674109.

Item is

Files

hide Files
:
Gaiser et al..pdf (Publisher version), 2MB
Name:
Gaiser et al..pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

hide
Locator:
https://www.pnas.org/content/109/15/E889.long (Publisher version)
Description:
-
OA-Status:

Creators

hide
 Creators:
Gaiser, Maria R.1, Author
Lämmermann, Tim2, Author           
Feng, Xu1, Author
Igyarto, Botond Z.1, Author
Kaplan, Daniel H.1, Author
Tessarollo, Lino1, Author
Germain, Ronald N.1, Author
Udey, and Mark C.1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_1565141              

Content

hide
Free keywords: -
 Abstract: After activation, Langerhans cells (LC), a distinct subpopulation of epidermis-resident dendritic cells, migrate from skin to lymph nodes where they regulate the magnitude and quality of immune responses initiated by epicutaneously applied antigens. Modulation of LC-keratinocyte adhesion is likely to be central to regulation of LC migration. LC express high levels of epithelial cell adhesion molecule (EpCAM; CD326), a cell-surface protein that is characteristic of some epithelia and many carcinomas and that has been implicated in intercellular adhesion and metastasis. To gain insight into EpCAM function in a physiologic context in vivo, we generated conditional knockout mice with EpCAM-deficient LC and characterized them. Epidermis from these mice contained increased numbers of LC with normal levels of MHC and costimulatory molecules and T-cell-stimulatory activity in vitro. Migration of EpCAM-deficient LC from skin explants was inhibited, but chemotaxis of dissociated LC was not. Correspondingly, the ability of contact allergen-stimulated, EpCAM-deficient LC to exit epidermis in vivo was delayed, and strikingly fewer hapten-bearing LC subsequently accumulated in lymph nodes. Attenuated migration of EpCAM-deficient LC resulted in enhanced contact hypersensitivity responses as previously described in LC-deficient mice. Intravital microscopy revealed reduced translocation and dendrite motility in EpCAM-deficient LC in vivo in contact allergen-treated mice. These results conclusively link EpCAM expression to LC motility/migration and LC migration to immune regulation. EpCAM appears to promote LC migration from epidermis by decreasing LC-keratinocyte adhesion and may modulate intercellular adhesion and cell movement within in epithelia during development and carcinogenesis in an analogous fashion.

Details

hide
Language(s): eng - English
 Dates: 2012-04-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1073/pnas.1117674109
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 109 Sequence Number: - Start / End Page: E889 - E897 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230