Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  The organization of the insect visual system (Light microscopy) I: Projections and arrangements of neurons in the lamina ganglionaris of Diptera

Strausfeld, N. (1971). The organization of the insect visual system (Light microscopy) I: Projections and arrangements of neurons in the lamina ganglionaris of Diptera. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 121(3), 377-441. doi:10.1007/BF00337641.

Item is


show Files




Strausfeld, N1, 2, Author           
1Former Department Structure and Function of Natural Nerve-Net , Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497803              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              


Free keywords: -
 Abstract: The structure of optic cartridges in the frontal part of the lamina ganglionaris (the outermost synaptic region of the visual system of insects) has been analysed from selective and reduced silver stained preparations. The results, obtained from studies on five different species of Diptera, confirm that six retinula cells, together situated in a single ommatidium, project to six optic cartridges in a manner no different from that described by Braitenberg (1967) from Musca domestica. Each optic cartridge contains five first order interneurons (monopolar cells) which project together to a single column in the second synaptic region, the medulla. The dendritic arrangement of two of these neurons (L1 and L2) indicates that they must make contact with all six retinula cell terminals of a cartridge (R1–R6). Two others (L3 and L5) have processes that reach to only some of the retinula cell endings. A fifth form of monopolar cell (L4) sometimes has an arrangement of processes which could establish contact with all six retinula cells: other cells of the same type may contact only a proportion of them. This neuron (L4) also has an arrangement of collaterals such as to allow lateral interaction between neigbouring optic cartridges. The processes of the other four monopolar cells (L1, L2, L3 and L5) are usually contained within a single cartridge. In addition to these elements there is a pair of receptor prolongations (the long visual fibres, R7 and R8) that bypasses all other elements of a cartridge, including the receptor terminals R1–R6, and finally terminates in the medulla. Four types of neurons, which are derived from perikarya lying just beneath or just above the second synaptic region, send fibres across the first optic chiasma to the lamina. Like all the other interneuronal elements of cartridges the terminals of these so-called “centrifugal” cells have characteristic topographical relationships with the cyclic arrangement of retinula cell terminals. Apart from the above mentioned neurons there is also a system of tangential fibres whose processes invade single cartridges but which together could provide a substrate for relaying information to the medulla derived from aggregates of cartridges.

Optic cartridges contain at least 15 neural elements other than retinula cells. This complex structure is discussed with respect to the receptor physiology, as it is known from electrophysiological and behavioural experiments. The arrangements of neurons in cartridges is tentatively interpreted as a means of providing at least 6 separate channels of information to the medulla, four of which may serve special functions such as relaying color coded information or information about the angle of polarised light at high light intensities.


 Dates: 1971-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/BF00337641
 Degree: -



Legal Case


Project information


Source 1

Title: Zeitschrift für Zellforschung und Mikroskopische Anatomie
Source Genre: Journal
Publ. Info: Wien : Springer-Verlag
Pages: - Volume / Issue: 121 (3) Sequence Number: - Start / End Page: 377 - 441 Identifier: ISSN: 0340-0336
CoNE: https://pure.mpg.de/cone/journals/resource/954925510416