English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions

Balos, V., Imoto, S., Netz, R. R., Bonn, M., Bonthuis, D. J., Nagata, Y., et al. (2020). Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nature Communications, 11: 1611. doi:10.1038/s41467-020-15450-2.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-39C4-D Version Permalink: http://hdl.handle.net/21.11116/0000-0006-39C7-A
Genre: Journal Article

Files

show Files
hide Files
:
s41467-020-15450-2.pdf (Publisher version), 2MB
Name:
s41467-020-15450-2.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Balos, Vasileios1, 2, Author              
Imoto, Sho2, Author
Netz, Roland R.3, Author
Bonn, Mischa2, Author
Bonthuis, Douwe Jan3, 4, Author
Nagata, Yuki2, Author
Hunger, Johannes2, Author
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany, ou_persistent22              
3Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany, ou_persistent22              
4Institute of Theoretical and Computational Physics, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Despite the widespread use of aqueous electrolytes as conductors, the molecular mechanism of ionic conductivity at moderate to high electrolyte concentrations remains largely unresolved. Using a combination of dielectric spectroscopy and molecular dynamics simulations, we show that the absorption of electrolytes at ~0.3 THz sensitively reports on the local environment of ions. The magnitude of these high-frequency ionic motions scales linearly with conductivity for a wide range of ions and concentrations. This scaling is rationalized within a harmonic oscillator model based on the potential of mean force extracted from simulations. Our results thus suggest that long-ranged ionic transport is intimately related to the local energy landscape and to the friction for short-ranged ion dynamics: a high macroscopic electrolyte conductivity is thereby shown to be related to large-amplitude motions at a molecular scale.

Details

show
hide
Language(s): eng - English
 Dates: 2019-04-242020-03-122020-03-31
 Publication Status: Published online
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41467-020-15450-2
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: 8 Volume / Issue: 11 Sequence Number: 1611 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723