English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Present-day mass-metallicity relation for galaxies using a new electron temperature method

Yates, R. M., Schady, P., Chen, T.-W., Schweyer, T., & Wiseman, P. (2020). Present-day mass-metallicity relation for galaxies using a new electron temperature method. Astronomy and Astrophysics, 634: A107. doi:10.1051/0004-6361/201936506.

Item is

Files

show Files
hide Files
:
Present-day mass-metallicity relation for galaxies using a new electron temperature method.pdf (Any fulltext), 3MB
 
File Permalink:
-
Name:
Present-day mass-metallicity relation for galaxies using a new electron temperature method.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Yates, R. M.1, Author           
Schady, P.1, Author           
Chen, T.-W.1, Author           
Schweyer, T.1, Author           
Wiseman, P.1, Author           
Affiliations:
1High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society, ou_159890              

Content

show
hide
Free keywords: -
 Abstract: Aims. We investigate electron temperature (Te) and gas-phase oxygen abundance (ZTe) measurements for galaxies in the local Universe (z <  0.25). Our sample comprises spectra from a total of 264 emission-line systems, ranging from individual HII regions to whole galaxies, including 23 composite HII regions from star-forming main sequence galaxies in the MaNGA survey. Methods. We utilise 130 of these systems with directly measurable Te(OII) to calibrate a new metallicity-dependent Te(OIII)–Te(OII) relation that provides a better representation of our varied dataset than existing relations from the literature. We also provide an alternative Te(OIII)–Te(NII) calibration. This new Te method is then used to obtain accurate ZTe estimates and form the mass – metallicity relation (MZR) for a sample of 118 local galaxies. Results. We find that all the Te(OIII)–Te(OII) relations considered here systematically under-estimate ZTe for low-ionisation systems by up to 0.6 dex. We determine that this is due to such systems having an intrinsically higher O+ abundance than O++ abundance, rendering ZTe estimates based only on [OIII] lines inaccurate. We therefore provide an empirical correction based on strong emission lines to account for this bias when using our new Te(OIII)–Te(OIII) and Te(OIII)–Te(NII) relations. This allows for accurate metallicities (1σ = 0.08 dex) to be derived for any low-redshift system with an [OIII]λ4363 detection, regardless of its physical size or ionisation state. The MZR formed from our dataset is in very good agreement with those formed from direct measurements of metal recombination lines and blue supergiant absorption lines, in contrast to most other Te-based and strong-line-based MZRs. Our new Te method therefore provides an accurate and precise way of obtaining ZTe for a large and diverse range of star-forming systems in the local Universe.

Details

show
hide
Language(s):
 Dates: 2020-02-18
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/201936506
Other: LOCALID: 3222104
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: France : EDP Sciences S A
Pages: - Volume / Issue: 634 Sequence Number: A107 Start / End Page: - Identifier: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1