ausblenden:
Schlagwörter:
-
Zusammenfassung:
Metal alloy catalysts can develop complex surface structures when exposed to reactive atmospheres. The structures of the resulting surfaces have intricate relationships with a myriad of factors, such as the affinity of the individual alloying elements to the components of the gas atmosphere, and the bond strengths of the multitude of low-energy surface compounds that can be formed. Identifying the atomic structure of such surfaces is a prerequisite for establishing structure-property relationships, as well as for modeling such catalysts in ab initio calculations. Here we show that an alloy, consisting of an oxophilic metal (Cu) diluted into a noble metal (Ag), forms a meta-stable 2-dimensional oxide monolayer the more oxophilic metal, when the alloy is subjected to oxidative reaction conditions. The presence of this oxide is correlated with selectivity in the corresponding test reaction of ethylene epoxidation. In the present study, using a combination of in-situ, ex-situ and theoretical methods (NAP-XPS, XPEEM, LEED, and DFT) we determine the structure to be a 2-dimensional analogue of Cu2O, resembling a single lattice plane of Cu2O. The overlayer holds an pseudo-epitaxial relationship with the underlying noble metal. Spectroscopic evidence shows that the oxide’s electronic structure is qualitatively distinct from its 3-dimensional counterpart, and due to weak electronic coupling with the underlying noble metal, it exhibits metallic properties. These findings provide precise details of this peculiar structure, and valuable insights into how alloying can enhance catalytic properties.