English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Small ionic radius limits magnesium water interaction in amorphous calcium/magnesium carbonates

Jensen, A. C. S., Imberti, S., Habraken, W., & Bertinetti, L. (2020). Small ionic radius limits magnesium water interaction in amorphous calcium/magnesium carbonates. The Journal of Physical Chemistry C, 124(11), 6141-6144. doi:10.1021/acs.jpcc.9b11594.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 2MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Jensen, Anders C. S.1, Author           
Imberti, Silvia, Author
Habraken, Woutherus2, Author           
Bertinetti, Luca3, Author           
Affiliations:
1Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863285              
2Wouter Habraken (Indep. Res.), Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2231638              
3Luca Bertinetti, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2379691              

Content

show
hide
Free keywords: Calcium; Magnesium; Molecules; Ions; Water
 Abstract: The stabilizing effect of magnesium ions on amorphous calcium carbonate has been studied extensively due to its widespread occurrence in biogenic minerals. It has long been suggested that magnesium binds water more strongly compared to calcium given its relatively high dehydration energy. However, recent work has shown that mobility increases in the presence of a magnesium ion relative to the pure calcium phase. Using total scattering and EPSR modeling, we show here that in amorphous magnesium carbonate, because of the small size of the ion, the coordination number of magnesium is smaller and the interaction with water are therefore limited. As a result, ∼35% of water molecules are bound exclusively by hydrogen bonds mainly to the anions.

Details

show
hide
Language(s):
 Dates: 2020-02-282020
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acs.jpcc.9b11594
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry C
  Abbreviation : J. Phys. Chem. C
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 124 (11) Sequence Number: - Start / End Page: 6141 - 6144 Identifier: ISSN: 1932-7447