English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Proteomic and interactomic insights into the molecular basis of cell functional diversity

Bludau, I., & Aebersold, R. (2020). Proteomic and interactomic insights into the molecular basis of cell functional diversity. NATURE REVIEWS MOLECULAR CELL BIOLOGY. doi:10.1038/s41580-020-0231-2.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-4E14-D Version Permalink: http://hdl.handle.net/21.11116/0000-0006-4E15-C
Genre: Journal Article
Alternative Title : Author Correction: Proteomic and interactomic insights into the molecular basis of cell functional diversity

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bludau, Isabell1, Author              
Aebersold, Ruedi2, Author
Affiliations:
1Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              
2external, ou_persistent22              

Content

show
hide
Free keywords: PROTEIN-INTERACTION LANDSCAPE; MASS-SPECTROMETRY; MAP; NETWORK; TRANSCRIPTION; DYNAMICS; WIDE; IDENTIFICATION; ARCHITECTURE; TRANSLATION
 Abstract: The ability of living systems to adapt to changing conditions originates from their capacity to change their molecular constitution. This is achieved by multiple mechanisms that modulate the quantitative composition and the diversity of the molecular inventory. Molecular diversification is particularly pronounced on the proteome level, at which multiple proteoforms derived from the same gene can in turn combinatorially form different protein complexes, thus expanding the repertoire of functional modules in the cell. The study of molecular and modular diversity and their involvement in responses to changing conditions has only recently become possible through the development of new 'omics'-based screening technologies. This Review explores our current knowledge of the mechanisms regulating functional diversification along the axis of gene expression, with a focus on the proteome and interactome. We explore the interdependence between different molecular levels and how this contributes to functional diversity. Finally, we highlight several recent techniques for studying molecular diversity, with specific focus on mass spectrometry-based analysis of the proteome and its organization into functional modules, and examine future directions for this rapidly growing field. Cells maximize the repertoire of functions produced from their genome through introducing diversity at each stage of the gene expression process, including at the post-translational level. New advances in proteomics and interactomics have begun to shed light on the extent to which diversity is introduced on the proteome level and by the organization of proteins into modular interaction networks.

Details

show
hide
Language(s): eng - English
 Dates: 2020-04-172020-03-31
 Publication Status: Published online
 Pages: 14
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NATURE REVIEWS MOLECULAR CELL BIOLOGY
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND : NATURE PUBLISHING GROUP
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 1471-0072