English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids

Kanduč, M., Schneck, E., Loche, P., Jansen, S., Schenk, H. J., & Netz, R. R. (2020). Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids. Proceedings of the National Academy of Sciences of the United States of America, 117(20): 201917195, pp. 10733-10739. doi:10.1073/pnas.1917195117.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-4F85-C Version Permalink: http://hdl.handle.net/21.11116/0000-0006-72B8-A
Genre: Journal Article

Files

show Files
hide Files
:
Article.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
Article.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kanduč, Matej, Author
Schneck, Emanuel1, Author              
Loche, Philip, Author
Jansen, Steven, Author
Schenk, H. Jochen, Author
Netz, Roland R., Author
Affiliations:
1Emanuel Schneck, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2074300              

Content

show
hide
Free keywords: caviation; bubble nucleation; lipid bilayers; free energy barrier; molecular dynamics simulations
 Abstract: Numerous biological systems contain metastable liquids at considerable negative pressures. As a prominent example, plants use negative pressures to suck water from the soil into their leaves. A long-debated mystery is why the maximal negative pressures are approximately −100 bar. A ubiquitous ingredient of biological liquids is lipids. Combining atomistic simulations and kinetic modeling, we show that lipid bilayers lead to cavitation at negative pressures of about −100 bar over timescales of hours to days, whereas water with added salt or nonpolar gas stays stable over many years. Our findings show that the presence of lipid aggregates imposes an upper stability limit for the magnitude of negative pressures in biological liquids.Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around −100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant timescales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length scales and timescales. We find that lipid bilayers, in contrast to small solutes, increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach −100 bar does cavitation occur on biologically relevant timescales. Our results suggest that bilayer-based cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers.

Details

show
hide
Language(s): eng - English
 Dates: 2020-05-012020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 117 (20) Sequence Number: 201917195 Start / End Page: 10733 - 10739 Identifier: ISSN: 0027-8424