Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Inflection point in the power spectrum of stellar brightness variations: II. The Sun

Amazo-Gómez, E. M., Shapiro, A., Solanki, S. K., Krivova, N. A., Kopp, G., Reinhold, T., et al. (2020). Inflection point in the power spectrum of stellar brightness variations: II. The Sun. Astronomy and Astrophysics, 636: A69. doi:10.1051/0004-6361/201936925.

Item is


show hide
Genre: Journal Article


show Files




Amazo-Gómez, E. M.1, Author
Shapiro, Alexander1, 2, Author              
Solanki, Sami K.1, Author              
Krivova, Natalie A.1, Author              
Kopp, G., Author
Reinhold, Timo2, Author              
Oshagh, M., Author
Reiners, A., Author
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              
2ERC Starting Grant: Connecting Solar and Stellar Variabilities (SOLVe), Max Planck Institute for Solar System Research, Max Planck Society, ou_3164811              


Free keywords: methods: data analysis / stars: solar-type / Sun: activity / Sun: fundamental parameters / stars: activity / stars: rotation
 Abstract: Context. Young and active stars generally have regular, almost sinusoidal, patterns of variability attributed to their rotation, while the majority of older and less active stars, including the Sun, have more complex and non-regular light curves, which do not have clear rotational-modulation signals. Consequently, the rotation periods have been successfully determined only for a small fraction of the Sun-like stars (mainly the active ones) observed by transit-based planet-hunting missions, such as CoRoT, Kepler, and TESS. This suggests that only a small fraction of such systems have been properly identified as solar-like analogues. Aims. We aim to apply a new method of determining rotation periods of low-activity stars, such as the Sun. The method is based on calculating the gradient of the power spectrum (GPS) of stellar brightness variations and identifying a tell-tale inflection point in the spectrum. The rotation frequency is then proportional to the frequency of that inflection point. In this paper, we compare this GPS method to already-available photometric records of the Sun. Methods. We applied GPS, auto-correlation functions, Lomb-Scargle periodograms, and wavelet analyses to the total solar irradiance (TSI) time series obtained from the Total Irradiance Monitor on the Solar Radiation and Climate Experiment and the Variability of solar IRradiance and Gravity Oscillations experiment on the SOlar and Heliospheric Observatory missions. We analysed the performance of all methods at various levels of solar activity. Results. We show that the GPS method returns accurate values of solar rotation independently of the level of solar activity. In particular, it performs well during periods of high solar activity, when TSI variability displays an irregular pattern, and other methods fail. Furthermore, we show that the GPS and light curve skewness can give constraints on facular and spot contributions to brightness variability. Conclusions. Our results suggest that the GPS method can successfully determine the rotational periods of stars with both regular and non-regular light curves.


Language(s): eng - English
 Dates: 2020
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/201936925
 Degree: -



Legal Case


Project information


Source 1

Title: Astronomy and Astrophysics
Source Genre: Journal
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 636 Sequence Number: A69 Start / End Page: - Identifier: -