English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I

Schuller, J. M., Saura, P., Thiemann, J., Schuller, S. K., Gamiz-Hernandez, A. P., Kurisu, G., et al. (2020). Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I. NATURE COMMUNICATIONS, 11(1). doi:10.1038/s41467-020-14347-4.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
s41467-020-14347-4.pdf (Any fulltext), 2MB
Name:
s41467-020-14347-4.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
open access article
License:
-

Locators

show

Creators

show
hide
 Creators:
Schuller, Jan M.1, Author              
Saura, Patricia2, Author
Thiemann, Jacqueline2, Author
Schuller, Sandra K.1, Author              
Gamiz-Hernandez, Ana P.2, Author
Kurisu, Genji2, Author
Nowaczyk, Marc M.2, Author
Kaila I, Ville R.2, Author
Affiliations:
1Conti, Elena / Structural Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565144              
2external, ou_persistent22              

Content

show
hide
Free keywords: BEAM-INDUCED MOTION; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; CRYO-EM; ANHYDRASE; ELECTRON; VALIDATION; CO2; CYANOBACTERIUM; ELECTROSTATICS
 Abstract: Photosynthetic organisms capture light energy to drive their energy metabolism, and employ the chemical reducing power to convert carbon dioxide (CO2) into organic molecules. Photorespiration, however, significantly reduces the photosynthetic yields. To survive under low CO2 concentrations, cyanobacteria evolved unique carbon-concentration mechanisms that enhance the efficiency of photosynthetic CO2 fixation, for which the molecular principles have remained unknown. We show here how modular adaptations enabled the cyanobacterial photosynthetic complex I to concentrate CO2 using a redox-driven proton-pumping machinery. Our cryo-electron microscopy structure at 3.2 angstrom resolution shows a catalytic carbonic anhydrase module that harbours a Zn2+ active site, with connectivity to proton-pumping subunits that are activated by electron transfer from photosystem I. Our findings illustrate molecular principles in the photosynthetic complex I machinery that enabled cyanobacteria to survive in drastically changing CO2 conditions. Cyanobacteria evolved carbon-concentration mechanisms to enhance the efficiency of photosynthetic CO2 fixation, but the molecular principles have remained unknown. Here authors use cryo-EM to reveal how modular adaptations enabled the photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus to concentrate CO2.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published in print
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NATURE COMMUNICATIONS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND : NATURE PUBLISHING GROUP
Pages: - Volume / Issue: 11 (1) Sequence Number: - Start / End Page: - Identifier: ISSN: 2041-1723