Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability

Chu, S., Guan, D., Sun, H., Fei, L., Hu, Z., Lin, H.-J., et al. (2020). Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. Journal of Materials Chemistry A, 8, 8075-8083. doi:10.1039/d0ta02417a.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chu, Shiyong1, Autor
Guan, Daqin1, Autor
Sun, Hainan1, Autor
Fei, Liangshuang1, Autor
Hu, Zhiwei2, Autor           
Lin, Hong-Ji1, Autor
Weng, Shih-Chang1, Autor
Chen, Chien-Te1, Autor
Ran, Ran1, Autor
Zhou, Wei1, Autor
Shao, Zongping1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Cost effectiveness, Durability, Electrocatalysts, Ion exchange, Metal-air batteries, Oxygen, Oxygen evolution reaction, Positive ions, Transition metal oxides, Transition metals, Acidic solutions, Atom arrangement, Cation exchanges, Electrocatalytic performance, Hydroxyl groups, Oxygen evolution activity, Oxygen evolution reaction (oer), Particulate morphology, Sodium compounds
 Zusammenfassung: Cost-effective electrocatalysts with high activity and long durability for the oxygen evolution reaction (OER) are key to water splitting and rechargeable metal-air batteries. Here, we report the development of a superior OER electrocatalyst with outstanding activity, favorable durability, and stable particulate morphology based on an ex situ ultra-fast cation exchange strategy that can result in fine tuning of the atom arrangement inside the oxide lattice, thus optimizing the electrocatalytic performance. O3-phase NaCo0.8Fe0.2O2 (O-NCF) is selected as the starting material, and the sodium in the oxide lattice is rapidly exchanged (several minutes) with hydronium ions (H3O+) in an acidic solution. The as-derived structure fine-tuned sample displays excellent OER performances in alkaline media with an ultra-low overpotential of only 234 mV at 10 mA cm-2 in oxide-based electrocatalysts and an ultra-small Tafel slope of 34 mV dec-1. The exchange of H3O+ with Na+ does not affect the oxidation state of cobalt and iron cations inside the oxide lattice, while protons in the inserted H3O+ promote the formation of the hydroxyl group to improve activity. As a general strategy, such cation exchange strategy can also be applied to many other layered sodium transition metal oxides. © The Royal Society of Chemistry.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-04-072020-04-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1039/d0ta02417a
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Materials Chemistry A
  Kurztitel : J. Mater. Chem. A
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, UK : Royal Society of Chemistry
Seiten: - Band / Heft: 8 Artikelnummer: - Start- / Endseite: 8075 - 8083 Identifikator: ISSN: 2050-7488
CoNE: https://pure.mpg.de/cone/journals/resource/2050-7488