Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Fundamental Decompositions and Multistationarity of Power-Law Kinetic Systems

Hernandez, B. S., Mendoza, E. R., & de los Reyes V, A. A. (2020). Fundamental Decompositions and Multistationarity of Power-Law Kinetic Systems. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 83(2), 403-434.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hernandez, Bryan S.1, Autor
Mendoza, Eduardo R.2, Autor           
de los Reyes V, Aurelio A.1, Autor
Affiliations:
1external, ou_persistent22              
2Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565164              

Inhalt

einblenden:
ausblenden:
Schlagwörter: REACTION NETWORKS; DEFICIENCY-ZERO; STEADY-STATES
 Zusammenfassung: The fundamental decomposition of a chemical reaction network (also called its "F-decomposition") is the set of subnetworks generated by the partition of its set of reactions into the "fundamental classes" introduced by Ji and Feinberg in 2011 as the baths of their "higher deficiency algorithm" for mass action systems. The first part of this paper studies the properties of the F-decomposition, in particular, its independence (i.e., the network's stoichiometric subspace is the direct sum of the subnetworks' stoichiometric subspaces) and its incidence-independence (i.e., the image of the network's incidence map is the direct sum of the incidence maps' images of the subnetworks). We derive necessary and sufficient conditions for these properties and identify network classes where the F-decomposition coincides with other known decompositions. The second part of the paper applies the above-mentioned results to improve the Multistationarity Algorithm for power-law kinetic systems (MSA), a general computational approach that we introduced in previous work. We show that for systems with non-reactant determined interactions but with an independent F-decomposition, the transformation to a dynamically equivalent system with reactant-determined interactions - required in the original MSA - is not necessary. We illustrate this improvement with the subnetwork of Schmitz's carbon cycle model recently analyzed by Fortun et al.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Erschienen
 Seiten: 32
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000529089500009
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: PO BOX 60, RADOJA DOMANOVICA 12, KRAGUJEVAC 34000, SERBIA : UNIV KRAGUJEVAC, FAC SCIENCE
Seiten: - Band / Heft: 83 (2) Artikelnummer: - Start- / Endseite: 403 - 434 Identifikator: ISSN: 0340-6253