Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Structure and composition of the tunic in the sea pineapple Halocynthia roretzi : a complex cellulosic composite biomaterial

Song, G., Delroisse, J., Schoenaers, D., Kim, H., Nguyen, T. C., Horbelt, N., et al. (2020). Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: a complex cellulosic composite biomaterial. Acta Biomaterialia, 111, 290-301. doi:10.1016/j.actbio.2020.04.038.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Proof.pdf (beliebiger Volltext), 6MB
 
Datei-Permalink:
-
Name:
Proof.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
Article.pdf (Verlagsversion), 6MB
 
Datei-Permalink:
-
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Song, Geonho1, Autor           
Delroisse, Jérôme, Autor
Schoenaers, Dorian, Autor
Kim, Hyungbin, Autor
Nguyen, Thai Cuong, Autor
Horbelt, Nils1, Autor           
Leclère, Philippe, Autor
Hwang, Dong Soo, Autor
Harrington, Matthew J.1, Autor           
Flammang, Patrick, Autor
Affiliations:
1Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863292              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Tunicata, Ascidiacea, Cellulose-based material, Dityrosine cross-links, Bromotyrosine, Helicoidal structure
 Zusammenfassung: Biological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton, known as a tunic, which has been studied quite extensively in several species. However, currently, there are still gaps in our knowledge about the detailed structure and composition of this cellulosic biocomposite. Here, we investigate the composition and hierarchical structure of the tough tunic from the species Halocynthia roretzi, through a cross-disciplinary approach combining traditional histology, immunohistochemistry, vibrational spectroscopy, X-ray diffraction, and atomic force and electron microscopies. The picture emerging is that the tunic of H. roretzi is a hierarchically-structured composite of cellulose and proteins with several compositionally and structurally distinct zones. At the surface is a thin sclerotized cuticular layer with elevated composition of protein containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised primarily of helicoidally-ordered crystalline cellulose fibres with a lower protein content. The subcuticular zone directly beneath the surface contains much less organized cellulose fibres. Given current efforts to utilize biorenewable cellulose sources for the sustainable production of bio-inspired composites, these insights establish the tunic of H. roretzi as an exciting new archetype for extracting relevant design principles.
Statement of Significance
Tunicates are the only animals able to produce cellulose. They use this structural polysaccharide to build an exoskeleton called a tunic. Here, we investigate the composition and hierarchical structure of the tough tunic from the sea pineapple Halocynthia roretzi through a multiscale cross-disciplinary approach. The tunic of this species is a composite of cellulose and proteins with two distinct layers. At the surface is a thin sclerotized cuticular layer with a higher protein content containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised of well-ordered cellulose fibres with a lower protein content. Given current efforts to utilize cellulose to produce advanced materials, the tunic of the sea pineapple provides a striking model for the design of bio-inspired cellulosic composites.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-05-112020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Acta Biomaterialia
  Andere : Acta Biomater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 111 Artikelnummer: - Start- / Endseite: 290 - 301 Identifikator: ISSN: 1742-7061