Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Phase space analysis of quantum transport in electronic nanodevices

Datseris, G., & Fleischmann, R. (2020). Phase space analysis of quantum transport in electronic nanodevices. Journal of Physics Communications, 4(7): 075006. doi:10.1088/2399-6528/ab8f01.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Datseris, George1, Autor           
Fleischmann, Ragnar1, Autor           
Affiliations:
1Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063286              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Electronic transport in nanodevices is commonly studied theoretically and numerically within the Landauer-B\"uttiker formalism: a device is characterized by its scattering properties to and from reservoirs connected by perfect semi-infinite leads, and transport quantities are derived from the scattering matrix. In some respects, however, the device becomes a ``black box'' as one only analyses what goes in and out. Here we use the Husimi function as a complementary tool for quantitatively understanding transport in graphene nanodevices. It is a phase space representation of the scattering wavefunctions that allows to link the scattering matrix to a more semiclassical and intuitive description and gain additional insight in to the transport process. In this article we use the Husimi function to analyze some of the fascinating electronic transport properties of graphene, \emph{Klein tunneling} and \emph{intervalley scattering}, in two exemplary graphene nanodevices. By this we demonstrate the usefulness of the Husimi function in electronic nanodevices and present novel results e.g. on Klein tunneling outside the Dirac regime and intervalley scattering at a pn-junction and a tilted graphene edge.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-04-302020-07-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1088/2399-6528/ab8f01
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Physics Communications
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 4 (7) Artikelnummer: 075006 Start- / Endseite: - Identifikator: ISSN: 2399-6528