Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Open-boundary Hamiltonian adaptive resolution. From grand canonical to non-equilibrium molecular dynamics simulations

Heidari, M., Kremer, K., Golestanian, R., Potestio, R., & Cortes-Huerto, R. (2020). Open-boundary Hamiltonian adaptive resolution. From grand canonical to non-equilibrium molecular dynamics simulations. The Journal of Chemical Physics, 152(19): 194104. doi:10.1063/1.5143268.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Heidari, Maziar, Autor
Kremer, Kurt, Autor
Golestanian, Ramin1, Autor                 
Potestio, Raffaello, Autor
Cortes-Huerto, Robinson, Autor
Affiliations:
1Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2570692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We propose an open-boundary molecular dynamics method in which an atomistic system is in contact with an infinite particle reservoirat constant temperature, volume, and chemical potential. In practice, following the Hamiltonian adaptive resolution strategy, the systemis partitioned into a domain of interest and a reservoir of non-interacting, ideal gas particles. An external potential, applied only in theinterfacial region, balances the excess chemical potential of the system. To ensure that the size of the reservoir is infinite, we introduce aparticle insertion/deletion algorithm to control the density in the ideal gas region. We show that it is possible to study non-equilibriumphenomena with this open-boundary molecular dynamics method. To this aim, we consider a prototypical confined liquid under the influenceof an external constant density gradient. The resulting pressure-driven flow across the atomistic system exhibits a velocity profile consistentwith the corresponding solution of the Navier–Stokes equation. This method conserves, on average, linear momentum and closely resemblesexperimental conditions. Moreover, it can be used to study various direct and indirect out-of-equilibrium conditions in complex molecularsystems.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-05-192020-05-21
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.5143268
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 10 Band / Heft: 152 (19) Artikelnummer: 194104 Start- / Endseite: - Identifikator: ISSN: 0021-9606
ISSN: 1089-7690