Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Ghost attractors in spontaneous brain activity: Recurrent excursions into functionally-relevant BOLD phase-locking states

Vohryzek, J., Deco, G., Cessac, B., Kringelbach, M. L., & Cabral, J. (2020). Ghost attractors in spontaneous brain activity: Recurrent excursions into functionally-relevant BOLD phase-locking states. Frontiers in Systems Neuroscience, 14: 20. doi:10.3389/fnsys.2020.00020.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Vohryzek_2020.pdf (Verlagsversion), 9MB
Name:
Vohryzek_2020.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Vohryzek, Jakub1, 2, Autor
Deco, Gustavo3, 4, 5, 6, Autor           
Cessac, Bruno7, Autor
Kringelbach, Morten L.1, 2, Autor
Cabral, Joana1, 2, 8, Autor
Affiliations:
1Department of Psychiatry, University of Oxford, United Kingdom, ou_persistent22              
2Center for Music in the Brain, Aarhus University, Denmark, ou_persistent22              
3Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain, ou_persistent22              
4Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634551              
5Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain, ou_persistent22              
6Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia, ou_persistent22              
7Biovision Team, University of Côte d'Azur, Nice, France, ou_persistent22              
8ICVS - Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: LEiDA; Ghost attractors; Dynamic functional connectivity; Dynamical system theory; Functional networks; Resting-state
 Zusammenfassung: Functionally relevant network patterns form transiently in brain activity during rest, where a given subset of brain areas exhibits temporally synchronized BOLD signals. To adequately assess the biophysical mechanisms governing intrinsic brain activity, a detailed characterization of the dynamical features of functional networks is needed from the experimental side to constrain theoretical models. In this work, we use an open-source fMRI dataset from 100 healthy participants from the Human Connectome Project and analyze whole-brain activity using Leading Eigenvector Dynamics Analysis (LEiDA), which serves to characterize brain activity at each time point by its whole-brain BOLD phase-locking pattern. Clustering these BOLD phase-locking patterns into a set of k states, we demonstrate that the cluster centroids closely overlap with reference functional subsystems. Borrowing tools from dynamical systems theory, we characterize spontaneous brain activity in the form of trajectories within the state space, calculating the Fractional Occupancy and the Dwell Times of each state, as well as the Transition Probabilities between states. Finally, we demonstrate that within-subject reliability is maximized when including the high frequency components of the BOLD signal (>0.1 Hz), indicating the existence of individual fingerprints in dynamical patterns evolving at least as fast as the temporal resolution of acquisition (here TR = 0.72 s). Our results reinforce the mechanistic scenario that resting-state networks are the expression of erratic excursions from a baseline synchronous steady state into weakly-stable partially-synchronized states – which we term ghost attractors. To better understand the rules governing the transitions between ghost attractors, we use methods from dynamical systems theory, giving insights into high-order mechanisms underlying brain function.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-12-072020-03-252020-04-17
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3389/fnsys.2020.00020
Anderer: eCollection 2020
PMID: 32362815
PMC: PMC7182014
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 615539
Förderprogramm : -
Förderorganisation : European Research Council (ERC)
Projektname : This is only an excerpt. You can find the complete funding information on the article page.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Systems Neuroscience
  Kurztitel : Front Syst Neurosci
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne, Switzerland : Frontiers Research Foundation
Seiten: - Band / Heft: 14 Artikelnummer: 20 Start- / Endseite: - Identifikator: ISSN: 1662-5137
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5137