Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet–triplet state splittings of aryl-carbenes

Ghafarian Shirazi, R., Pantazis, D. A., & Neese, F. (2020). Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet–triplet state splittings of aryl-carbenes. Molecular Physics, 118(21-22): e1764644. doi:10.1080/00268976.2020.1764644.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ghafarian Shirazi, Reza1, Autor           
Pantazis, Dimitrios A.1, Autor           
Neese, Frank2, Autor           
Affiliations:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              
2Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Carbenes; spin states; coupled cluster theory; density functional theory; aryl-carbenes
 Zusammenfassung: Carbenes are challenging molecular species for quantum chemistry because of the energetic proximity of their singlet and triplet spin states and the sensitive dependence of spin-state energetics on the geometry of the carbene site. Here we use an extended set of aryl-carbenes to evaluate the performance of density functional theory (DFT) approximations as well as of wave function based perturbation theory approaches (orbital-optimised perturbation theory methods OO-MP2 and OO-SCS-MP2) against reference coupled cluster calculations with singles, doubles and perturbative triples conducted with the aid of the domain-based local pair natural orbitals approach, DLPNO-CCSD(T). In addition to the expected functional dependence, our results document a remarkable discordance in the performance of DFT methods in the sense that the functionals that yield the best geometries do not coincide with those that provide the best spin-state energetics. Analysis of the results allows us to propose a series of methods that are expected to perform reliably within certain confidence limits for the title systems. Additionally, methodological issues regarding the reference singlet–triplet gaps obtained by the DLPNO-CCSD(T) approach are discussed.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-03-012020-04-282020-05-182020-11-01
 Publikationsstatus: Erschienen
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1080/00268976.2020.1764644
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecular Physics
  Andere : Mol. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Taylor & Francis
Seiten: - Band / Heft: 118 (21-22) Artikelnummer: e1764644 Start- / Endseite: - Identifikator: ISSN: 0026-8976
CoNE: https://pure.mpg.de/cone/journals/resource/954925264211