Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Probabilistic detection of spectral line components

Sokolov, V., Pineda, J. E., Caselli, P., & Buchner, J. (2020). Probabilistic detection of spectral line components. The Astrophysical Journal Letters, 892(2): L32. doi:10.3847/2041-8213/ab8018.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Probabilistic detection of spectral line components.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
Probabilistic detection of spectral line components.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sokolov, Vlas1, Autor           
Pineda, Jaime E.1, Autor           
Caselli, Paola1, Autor           
Buchner, Johannes2, Autor           
Affiliations:
1Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society, ou_1950287              
2High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society, ou_159890              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Resolved kinematical information, such as from molecular gas in star-forming regions, is obtained from spectral line observations. However, these observations often contain multiple line-of-sight components, making estimates harder to obtain and interpret. We present a fully automatic method that determines the number of components along the line of sight, or the spectral multiplicity, through Bayesian model selection. The underlying open-source framework, based on nested sampling and conventional spectral line modeling, is tested using the large area ammonia maps of NGC 1333 in the Perseus molecular cloud obtained by the Green Bank Ammonia Survey (GAS). Compared to classic approaches, the presented method constrains velocities and velocity dispersions in a larger area. In addition, we find that the velocity dispersion distribution among multiple components did not change substantially from that of a single-fit component analysis of the GAS data. These results showcase the power and relative ease of the fitting and model selection method, which makes it a unique tool to extract maximum information from complex spectral data.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-03-03
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3847/2041-8213/ab8018
Anderer: LOCALID: 3237105
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Astrophysical Journal Letters
  Andere : Astrophys. J. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Chicago, IL : University of Chicago Press for the American Astronomical Society
Seiten: - Band / Heft: 892 (2) Artikelnummer: L32 Start- / Endseite: - Identifikator: ISSN: 2041-8205
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215