English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Imaging individual solute atoms at crystalline imperfections in metals

Katnagallu, S., Stephenson, L., Mouton, I., Freysoldt, C., Subramanyam, A. P. A., Jenke, J., et al. (2019). Imaging individual solute atoms at crystalline imperfections in metals. New Journal of Physics, 21(12): 123020. doi:10.1088/1367-2630/ab5cc4.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-8CFC-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-9B23-4
Genre: Journal Article

Files

show Files
hide Files
:
Katnagallu_2019_New_J._Phys._21_123020.pdf (Supplementary material), 2MB
Name:
Katnagallu_2019_New_J._Phys._21_123020.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2019
Copyright Info:
The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

Locators

show

Creators

show
hide
 Creators:
Katnagallu, Shyam1, Author              
Stephenson, Leigh1, Author              
Mouton, Isabelle1, 2, Author              
Freysoldt, Christoph3, Author              
Subramanyam, Aparna P. A.4, Author              
Jenke, Jan4, Author              
Ladines, Alvin Noe Collado5, Author              
Neumeier, Steffen6, Author              
Hammerschmidt, Thomas7, Author              
Drautz, Ralf8, Author              
Neugebauer, Jörg9, Author              
Vurpillot, François10, Author              
Raabe, Dierk11, Author              
Gault, Baptiste1, Author              
Affiliations:
1Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
2DEN-Service de Recherches de Métallurgie Appliquée, CEA, Gif-sur-Yvette, France, ou_persistent22              
3Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
4ICAMS, Ruhr-Universität Bochum, D-44801 Bochum, Germany, ou_persistent22              
5Department of Atomistic Modelling and Simulation, ICAMS, Ruhr-Universität Bochum, Germany, ou_persistent22              
6Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute i, Martensstr. 5, 91058 Erlangen, Germany, ou_persistent22              
7ICAMS, Ruhr-Universität Bochum, Bochum, Germany, ou_persistent22              
8ICAMS, Materials Research Department, Ruhr-Universität Bochum, Universitätsstraße 90a, Bochum, Germany, ou_persistent22              
9Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
10Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000, Rouen, France, ou_persistent22              
11Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Content

show
hide
Free keywords: Atoms; Binary alloys; Creep; Data mining; Defects; Inductively coupled plasma; Ion microscopes; Mass spectrometry; Nanocrystalline materials; Nickel alloys; Rhenium alloys, Atomic resolution; Crystalline imperfection; Elemental identifications; Field ion microscopy; Ni-based superalloys; Time of flight mass spectrometry; Time-of-flight mass spectroscopy; True atomic resolution, Density functional theory
 Abstract: Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials' properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining FIM with time-of-flight mass-spectrometry (tof-ms). Elemental identification and correlation to FIM images enabled by data mining of combined tof-ms delivers a truly analytical-FIM (A-FIM). Contrast variations due to different chemistries is also interpreted from density-functional theory (DFT). A-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni-Re binary alloy during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.

Details

show
hide
Language(s): eng - English
 Dates: 2019-12-13
 Publication Status: Published in print
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1088/1367-2630/ab5cc4
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : SK acknowledges the International Max-Planck Research School SurMat for funding. BG, LTS, SK and IM acknowledge funding from the MPG through the Laplace project. SN, BG, APAS, RD, TH acknowledge financial support from the German Research Foundation (DFG) through projects A4, B3 and C1 of the collaborative research centre SFB/TR 103. LTS and BG acknowledge financial support from the ERC-CoG SHINE-771602.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: New Journal of Physics
  Abbreviation : New J. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol : IOP Publishing
Pages: 11 Volume / Issue: 21 (12) Sequence Number: 123020 Start / End Page: - Identifier: ISSN: 1367-2630
CoNE: https://pure.mpg.de/cone/journals/resource/954926913666