Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Ultrafast generation and decay of a surface metal

Gierster, L., Vempati, S. P. K., & Stähler, J. (2021). Ultrafast generation and decay of a surface metal. Nature Communications, 12: 978. doi:10.1038/s41467-021-21203-6.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2005.13424.pdf (Preprint), 4MB
Name:
2005.13424.pdf
Beschreibung:
File downloaded from arXiv at 2020-06-16 12:28
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
s41467-021-21203-6.pdf (Verlagsversion), 2MB
Name:
s41467-021-21203-6.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gierster, Lukas1, 2, Autor           
Vempati, Sesha Pavan Kumar1, 3, Autor           
Stähler, Julia1, 2, Autor           
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2Humboldt-Universität zu Berlin, Institut für Chemie, Berlin, Germany, ou_persistent22              
3Department of Physics, Indian Institute of Technology Bhilai, Raipur, India, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Condensed Matter, Materials Science, cond-mat.mtrl-sci
 Zusammenfassung: Band bending (BB) at semiconductor surfaces or interfaces plays a pivotal
role in technology, ranging from field effect transistors to nanoscale devices for quantum technologies. The control of BB via chemical doping or electric fields can create metallic surfaces with properties not found in the bulk, such as high electron mobility, magnetism or superconductivity. Optical generation of metallic surfaces via BB on ultrafast timescales would facilitate a drastic
manipulation of the conduction, magnetic and optical properties of semiconductors for novel high-speed electronics. Here, we demonstrate the ultrafast (20 fs) generation of a metal at the (10-10) surface of ZnO upon photoexcitation. This semiconductor is widely used in optoelectronics due to
its transparency for visible light and its ease of nanostructuring. Compared to
hitherto known ultrafast photoinduced semiconductor-to-metal transitions (SMTs)
that occur in the bulk of inorganic semiconductors, the SMT at the ZnO surface
is launched by 3-4 orders of magnitude lower photon fluxes; also, the
back-transition to the semiconducting state is at least one order of magnitude faster than in previous studies of other materials. Using time- and angle-resolved photoelectron spectroscopy, we show that the SMT is caused by photoinduced downward surface BB due to photodepletion of deep surface defects. The resulting positive surface charges pull the conduction band below the equilibrium Fermi level, similar to chemical doping. The discovered mechanism is not material-specific and presents a general route for controlling
metallicity confined to semiconductor interfaces on ultrafast timescales.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-05-272020-07-142021-01-142021-02-12
 Publikationsstatus: Online veröffentlicht
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 8 Band / Heft: 12 Artikelnummer: 978 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723