Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Materials for hydrogen-based energy storage – past, recent progress and future outlook

Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman Jr., R. C., et al. (2020). Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 827: 153548. doi:10.1016/j.jallcom.2019.153548.

Item is


show Files




Hirscher, Michael1, Author           
Yartys, Volodymyr A.2, Author
Baricco, Marcello3, Author
Bellosta von Colbe, Jose4, Author
Blanchard, Didier5, Author
Bowman Jr., Robert C.6, Author
Broom, Darren P.7, Author
Buckley, Craig E.8, Author
Chang, Fei9, Author
Chen, Ping10, Author
Cho, Young Whan11, Author
Crivello, Jean-Claude12, Author
Cuevas, Fermin12, Author
David, William I.F.13, 14, Author
de Jongh, Petra E.9, Author
Denys, Roman V.15, Author
Dornheim, Martin4, Author
Felderhoff, Michael16, Author           
Filinchuk, Yaroslav17, Author
Froudakis, George E.18, Author
Grant, David M.19, AuthorGray, Evan MacA.20, AuthorHauback, Bjørn C.2, AuthorHe, Teng10, AuthorHumphries, Terry D.8, AuthorJensen, Torben R.21, AuthorKim, Sangryun22, AuthorKojima, Yoshitsugu23, AuthorLatroche, Michel12, AuthorLi, Hai-Wen24, AuthorLototskyy, Mykhaylo V.25, AuthorMakepeace, Joshua W.13, AuthorMøller, Kasper T.8, AuthorNaheed, Lubna20, AuthorNgene, Peter9, AuthorNoréus, Dag26, AuthorNygård, Magnus Moe2, AuthorOrimo, Shin-ichi22, AuthorPaskevicius, Mark8, AuthorPasquini, Luca27, AuthorRavnsbæk, Dorthe B.28, AuthorSofianos, M. Veronica8, AuthorUdovic, Terrence J.29, AuthorVegge, Tejs5, AuthorWalker, Gavin S.19, AuthorWebb, Colin J.20, AuthorWeidenthaler, Claudia30, Author           Zlotea, Claudia12, Author more..
1Dept. Modern Magnetic Systems, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497648              
2Institute for Energy Technology (IFE), P.O. Box 40, NO-2027 Kjeller, Norway, ou_persistent22              
3Department of Chemistry and NIS, University of Turin, Via P.Giuria, 9, I-10125, Torino, Italy, ou_persistent22              
4Department of Nanotechnology, Helmholtz-Zentrum Geesthacht, Max-Plank-Str. 1, 21502, Geesthacht, Germany, ou_persistent22              
5DTU Energy, Department of Energy Conversion and Storage, Anker Engelunds Vej, Building 301, 2800 Kgs. Lyngby, Denmark, ou_persistent22              
6RCB Hydrides, LLC, 117 Miami Ave., Franklin, OH, 45005-3544, United States, ou_persistent22              
7Hiden Isochema, 422 Europa Boulevard, Warrington, WA5 7TS, United Kingdom, ou_persistent22              
8Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia, ou_persistent22              
9Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG, the Netherlands, ou_persistent22              
10Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China, ou_persistent22              
11Materials Science and Technology Research Division, Korea Institute of Science and Technology, CheongRyang, Seoul, South Korea, ou_persistent22              
12Univ. Paris Est Creteil, CNRS, ICMPE, UMR7182, F-94320, Thiais, France, ou_persistent22              
13Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom, ou_persistent22              
14ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, United Kingdom, ou_persistent22              
15HYSTORSYS AS, P.O. Box 45, NO-2027, Kjeller, Norway, ou_persistent22              
16Research Group Felderhoff, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_3027887              
17Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, B-1348, Louvain-la-Neuve, Belgium, ou_persistent22              
18Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003, Heraklion, Greece, ou_persistent22              
19Department of Mechanical, Materials and Manufacturing Engineering, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom, ou_persistent22              
20Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Australia, ou_persistent22              
21iNANO and Department of Chemistry, Aarhus University, Langelandsgade 140, Building 1512, 316, 8000 Aarhus C, Denmark, ou_persistent22              
22WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 980-8577, Sendai, Japan, ou_persistent22              
23Natural Science Center for Basic Research and Development (Department of Advanced Materials), Hiroshima University, 3-1 Kagamiyama 1-chome, Higashi, Hiroshima, 739-8530, Japan, ou_persistent22              
24Kyushu University, Kyudai Kyusyu University Platform of Inter/Transdisciplinary Energy Research (Q-PIT), Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan, ou_persistent22              
25HySA Systems (Hydrogen South Africa), University of the Western Cape, Bellville, 7535, South Africa, ou_persistent22              
26Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, Stockholm, Sweden, ou_persistent22              
27Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, Bologna, Italy, ou_persistent22              
28Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark, ou_persistent22              
29NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, United States, ou_persistent22              
30Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950291              


Free keywords: Hydrogen storage materials; Porous materials; Liquid hydrogen carriers; Complex metal hydrides; Intermetallic hydrides; Magnesium based materials; Low dimensional hydrides; Electrochemical energy storage; Heat storage; Hydrogen energy systems
 Abstract: Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, “Hydrogen-based Energy Storage” of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage.


Language(s): eng - English
 Dates: 2019-10-032019-12-242019-12-312020-06-25
 Publication Status: Issued
 Pages: 39
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.jallcom.2019.153548
 Degree: -



Legal Case


Project information


Source 1

Title: Journal of Alloys and Compounds
  Abbreviation : J. Alloy. Comp.
Source Genre: Journal
Publ. Info: Lausanne, Switzerland : Elsevier B.V.
Pages: - Volume / Issue: 827 Sequence Number: 153548 Start / End Page: - Identifier: ISSN: 0925-8388
CoNE: https://pure.mpg.de/cone/journals/resource/954925567746