Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections

Tan, A. M. Z., Freysoldt, C., & Hennig, R. G. (2020). Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections. Physical Review Materials, 4(6): 064004. doi:10.1103/PhysRevMaterials.4.064004.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tan, Anne Marie Z.1, 2, Autor           
Freysoldt, Christoph3, Autor           
Hennig, Richard G.4, Autor           
Affiliations:
1Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA, ou_persistent22              
2Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA, ou_persistent22              
3Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
4Department of Materals Science and Engineering, University of Florida, Gainesville, FL 32611-6400, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: ENERGY; SEMICONDUCTOR; ABSORPTION; DEFECTSMaterials Science;
 Zusammenfassung: Two-dimensional (2D) semiconducting transition metal dichalcogenides such as MoS2 have attracted extensive research interests for potential applications in optoelectronics, spintronics, photovoltaics, and catalysis. To harness the potential of these materials for electronic devices requires a better understanding of how defects control the carrier concentration, character, and mobility. Utilizing a correction scheme developed by Freysoldt and Neugebauer to ensure the appropriate electrostatic boundary conditions for charged defects in 2D materials, we perform density functional theory calculations to compute formation energies and charge transition levels associated with sulfur vacancies in monolayer and layered bulk MoS2. We investigate the convergence of these defect properties with respect to vacuum spacing, in-plane supercell dimensions, and different levels of theory. We also analyze the electronic structures of the defects in different charge states to gain insights into the effect of defects on bonding and magnetism. We predict that both vacancy structures undergo a Jahn-Teller distortion, which helps stabilize the sulfur vacancy in the -1 charged state.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-06-03
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : This work was supported by the National Science Foundation through the 2DCC-MIP under Award No. DMR1539916 and by the Awards No. DMR-1748464 and No. OAC-1740251. Computational resources were provided by the University of Florida Research Computing Center.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review Materials
  Kurztitel : Phys. Rev. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: College Park, MD : American Physical Society
Seiten: 11 Band / Heft: 4 (6) Artikelnummer: 064004 Start- / Endseite: - Identifikator: ISSN: 2475-9953
CoNE: https://pure.mpg.de/cone/journals/resource/2475-9953