English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential

Laemont, A., Abednatanzi, S., Derakshandeh, P. G., Verbruggen, F., Fiset, E., Qin, Q., et al. (2020). Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential. Green Chemistry, 22(10), 3095-3103. doi:10.1039/D0GC00090F.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-968B-4 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-968C-3
Genre: Journal Article

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
Article.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
SI.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
SI.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Laemont, Andreas, Author
Abednatanzi, Sara, Author
Derakshandeh, Parviz Gohari, Author
Verbruggen, Florian, Author
Fiset, Erika, Author
Qin, Qing1, Author              
Van Daele, Kevin, Author
Meledina, Maria, Author
Schmidt, Johannes, Author
Oschatz, Martin1, Author              
Van Der Voort, Pascal, Author
Rabaey, Korneel, Author
Antonietti, Markus2, Author              
Breugelmans, Tom, Author
Leus, Karen, Author
Affiliations:
1Martin Oschatz, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2364733              
2Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: -
 Abstract: Electrochemical reduction of CO2 provides a way to generate base chemicals from an abundant C1-source under mild conditions, whilst at the same time mitigating CO2 emissions. In this work, a novel class of tailorable, porous electrocatalysts for this process is proposed. Covalent triazine frameworks (CTFs) are grown in situ onto functionalized multiwalled carbon nanotubes. Hydroxyl groups decorating the surface of the multiwalled carbon nanotubes facilitate intimate contact between the carbon nanotubes and CTF, thus promoting efficient electron transfer. The novel hybrid materials generate CO with a faradaic efficiency up to 81 at an overpotential of 380 mV. The selectivity of the electrocatalysts could be linked to the amount of nitrogen present within the framework.

Details

show
hide
Language(s): eng - English
 Dates: 2020-02-132020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1039/D0GC00090F
BibTex Citekey: D0GC00090F
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Green Chemistry
  Other : Green Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, UK : Royal Society of Chemistry
Pages: - Volume / Issue: 22 (10) Sequence Number: - Start / End Page: 3095 - 3103 Identifier: ISSN: 1463-9262