ausblenden:
Schlagwörter:
-
Zusammenfassung:
We construct a new analytic phenomenological model for the extended circumgalactic material (CGM) of L∗ galaxies. Our model reproduces the OVII/OVIII absorption observations of the Milky Way (MW) and the OVI measurements reported by the COS-Halos and eCGM surveys. The warm/hot gas is in hydrostatic equilibrium in a MW gravitational potential, and we adopt a barotropic equation of state, resulting in a temperature variation as a function of radius. A pressure component with an adiabatic index of γ=4/3 is included to approximate the effects of a magnetic field and cosmic rays. We introduce a metallicity gradient motivated by the enrichment of the inner CGM by the Galaxy. We then present our fiducial model for the corona, tuned to reproduce the observed OVI-OVIII column densities, and with a total mass of Mgas≈5.5×1010 M⊙ inside rcgm≈280 kpc. The gas densities in the CGM are low (nH=10−5−3×10−4 cm−3) and its collisional ionization state is modified by the metagalactic radiation field (MGRF). We show that for OVI-bearing warm/hot gas with typical observed column densities NOVI∼3×1014 cm−2 at large (≳100 kpc) impact parameters from the central galaxies, the ratio of the cooling to dynamical times, tcool/tdyn, has a model-independent upper limit of ≲4. In our model, tcool/tdyn at large radii is ∼2−3. We present predictions for a wide range of future observations of the warm/hot CGM, from UV/X-ray absorption and emission spectroscopy, to dispersion measure (DM) and Sunyaev-Zeldovich CMB measurements. We provide the model outputs in machine-readable data files, for easy comparison and analysis.