Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Adaptations for wear resistance and damage resilience : micromechanics of spider cuticular “tools”

Tadayon, M., Younes-Metzler, O., Shelef, Y., Zaslansky, P., Rechels, A., Berner, A., et al. (2020). Adaptations for wear resistance and damage resilience: micromechanics of spider cuticular “tools”. Advanced Functional Materials, 30(32): 2000400. doi:10.1002/adfm.202000400.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 4MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tadayon, Maryam1, Autor           
Younes-Metzler, Osnat1, Autor           
Shelef, Yaniv, Autor
Zaslansky, Paul, Autor
Rechels, Alon, Autor
Berner, Alex, Autor
Zolotoyabko, Emil, Autor
Barth, Friedrich G., Autor
Fratzl, Peter2, Autor           
Bar-On, Benny, Autor
Politi, Yael1, Autor           
Affiliations:
1Yael Politi, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863297              
2Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: abrasion resistance, biopolymers, metal-ion cross-linking, microstructure, tribological behavior
 Zusammenfassung: In the absence of minerals as stiffening agents, insects and spiders often use metal-ion cross-linking of protein matrices in their fully organic load-bearing "tools". In this comparative study, the hierarchical fiber architecture, elemental distribution, and the micromechanical properties of the manganese- and calcium-rich cuticle of the claws of the spider Cupiennius salei, and the Zn-rich cuticle of the cheliceral fangs of the same animal are analyzed. By correlating experimental results to finite element analysis, functional microstructural and compositional adaptations are inferred leading to remarkable damage resilience and abrasion tolerance, respectively. The results further reveal that the incorporation of both zinc and manganese/calcium correlates well with increased biomaterial's stiffness and hardness. However, the abrasion-resistance of the claw material cross-linked by incorporation of Mn/Ca-ions surpasses that of many other non-mineralized biological counterparts and is comparable to that of the fang with more than triple Zn content. These biomaterial-adaptation paradigms for enhanced wear-resistance may serve as novel design principles for advanced, high-performance, functional surfaces, and graded materials.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-06-252020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/adfm.202000400
PMID: 0591
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Functional Materials
  Andere : Adv. Funct. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH Verlag GmbH
Seiten: - Band / Heft: 30 (32) Artikelnummer: 2000400 Start- / Endseite: - Identifikator: ISSN: 1616-301X