English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Overexpression of Sedoheptulose-1,7-Bisphosphatase Enhances Photosynthesis in Chlamydomonas reinhardtii and Has No Effect on the Abundance of Other Calvin-Benson Cycle Enzymes

Hammel, A., Sommer, F., Zimmer, D., Stitt, M., Mühlhaus, T., & Schroda, M. (2020). Overexpression of Sedoheptulose-1,7-Bisphosphatase Enhances Photosynthesis in Chlamydomonas reinhardtii and Has No Effect on the Abundance of Other Calvin-Benson Cycle Enzymes. Frontiers in Plant Science, 11: 868. doi:10.3389/fpls.2020.00868.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Hammel, Alexander1, Author
Sommer, Frederik1, Author
Zimmer, David1, Author
Stitt, M.2, Author              
Mühlhaus, Timo1, Author
Schroda, Michael1, Author
Affiliations:
1External Organizations, ou_persistent22              
2System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753327              

Content

show
hide
Free keywords: -
 Abstract: The productivity of plants and microalgae needs to be increased to feed the growing world population and to promote the development of a low-carbon economy. This goal can be achieved by improving photosynthesis via genetic engineering. In this study, we have employed the Modular Cloning strategy to overexpress the Calvin-Benson cycle (CBC) enzyme sedoheptulose-1,7-bisphosphatase (SBP1) up to threefold in the unicellular green alga Chlamydomonas reinhardtii. The protein derived from the nuclear transgene represented ∼0.3 of total cell protein. Photosynthetic rate and growth were significantly increased in SBP1-overexpressing lines under high-light and elevated CO2 conditions. Absolute quantification of the abundance of all other CBC enzymes by the QconCAT approach revealed no consistent differences between SBP1-overexpressing lines and the recipient strain. This analysis also revealed that the 11 CBC enzymes represent 11.9 of total cell protein in Chlamydomonas. Here, the range of concentrations of CBC enzymes turned out to be much larger than estimated earlier, with a 128-fold difference between the most abundant CBC protein (rbcL) and the least abundant (triose phosphate isomerase). Accordingly, the concentrations of the CBC intermediates are often but not always higher than the binding site concentrations of the enzymes for which they act as substrates. The enzymes with highest substrate to binding site ratios might represent good candidates for overexpression in subsequent engineering steps.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3389/fpls.2020.00868
BibTex Citekey: 10.3389/fpls.2020.00868
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Plant Science
  Abbreviation : Front. Plant Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne : Frontiers Media
Pages: - Volume / Issue: 11 Sequence Number: 868 Start / End Page: - Identifier: ISSN: 1664-462X
CoNE: https://pure.mpg.de/cone/journals/resource/1664462X