Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Rapid inhibition profiling identifies a keystone target in the nucleotide biosynthesis pathway

Peters, C. E., Lamsa, A., Liu, R. B., Quach, D., Sugie, J., Brumage, L., et al. (2018). Rapid inhibition profiling identifies a keystone target in the nucleotide biosynthesis pathway. ACS Chemical Biology, 13(12), 3251-3258. doi:10.1021/acschembio.8b00273.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Peters, Christine E., Autor
Lamsa, Anne, Autor
Liu, Roland B., Autor
Quach, Diana, Autor
Sugie, Joseph, Autor
Brumage, Lauren, Autor
Pogliano, Joe, Autor
López-Garrido, Javier1, Autor           
Pogliano, Kit, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling (RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-082018-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acschembio.8b00273
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Chemical Biology
  Kurztitel : ACS Chem. Biol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 13 (12) Artikelnummer: - Start- / Endseite: 3251 - 3258 Identifikator: ISSN: 1554-8929
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000035040