日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  The Maximum-Level Vertex in an Arrangement of Lines

Halperin, D., Har-Peled, S., Mehlhorn, K., Oh, E., & Sharir, M. (2020). The Maximum-Level Vertex in an Arrangement of Lines. Retrieved from http://arxiv.org/abs/2003.00518.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0006-AFB1-D 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0006-AFB2-C
資料種別: 成果報告書

ファイル

表示: ファイル
非表示: ファイル
:
arXiv:2003.00518.pdf (プレプリント), 882KB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0006-AFB3-B
ファイル名:
arXiv:2003.00518.pdf
説明:
File downloaded from arXiv at 2020-07-10 11:04
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Halperin, Dan1, 著者
Har-Peled, Sariel1, 著者
Mehlhorn, Kurt2, 著者           
Oh, Eunjin2, 著者           
Sharir, Micha1, 著者
所属:
1External Organizations, ou_persistent22              
2Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

内容説明

表示:
非表示:
キーワード: Computer Science, Computational Geometry, cs.CG
 要旨: Let $L$ be a set of $n$ lines in the plane, not necessarily in general
position. We present an efficient algorithm for finding all the vertices of the
arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the
number of lines of $L$ that pass strictly below $v$. The problem, posed in
Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it
seems, as this vertex might not be on the upper envelope of the lines.
We first assume that all the lines of $L$ are distinct, and distinguish
between two cases, depending on whether or not the upper envelope of $L$
contains a bounded edge. In the former case, we show that the number of lines
of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In
the latter case, we establish a similar property that holds after we remove
some of the lines that are incident to the single vertex of the upper envelope.
We present algorithms that run, in both cases, in optimal $O(n\log n)$ time.
We then consider the case where the lines of $L$ are not necessarily
distinct. This setup is more challenging, and the best we have is an algorithm
that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$.
Finally, we consider a related combinatorial question for degenerate
arrangements, where many lines may intersect in a single point, but all the
lines are distinct: We bound the complexity of the weighted $k$-level in such
an arrangement, where the weight of a vertex is the number of lines that pass
through the vertex. We show that the bound in this case is $O(n^{4/3})$, which
matches the corresponding bound for non-degenerate arrangements, and we use
this bound in the analysis of one of our algorithms.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2020-03-012020
 出版の状態: オンラインで出版済み
 ページ: 20 p.
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): arXiv: 2003.00518
URI: http://arxiv.org/abs/2003.00518
BibTex参照ID: Halperin_arXiv2003.00518
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: