English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics

Yıldırım, A., Suyu, S. H., & Halkola, A. (2020). Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics. Monthly Notices of the Royal Astronomical Society, 493(4), 4783-4807. doi:10.1093/mnras/staa498.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-BEB5-8 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-BEB6-7
Genre: Journal Article

Files

show Files
hide Files
:
Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Yıldırım, Akın1, Author              
Suyu, Sherry H.1, Author              
Halkola, Aleksi, Author
Affiliations:
1Physical Cosmology, MPI for Astrophysics, Max Planck Society, ou_2205644              

Content

show
hide
Free keywords: -
 Abstract: We present a joint strong lensing and stellar dynamical framework for future time-delay cosmography purposes. Based on a pixelated source reconstruction and the axisymmetric Jeans equations, we are capable of constraining cosmological distances and hence the current expansion rate of the Universe (H0) to the few per cent level per lens, when high signal-to-noise integral field unit (IFU) observations from the next generation of telescopes become available. For illustrating the power of this method, we mock up IFU stellar kinematic data of the prominent lens system RXJ1131−1231, given the specifications of the James Webb Space Telescope. Our analysis shows that the time-delay distance (DΔt) can be constrained with 3.1 per cent uncertainty at best, if future IFU stellar kinematics are included in the fit and if the set of candidate model parametrizations contains the true lens potential. These constraints would translate to a 3.2 per cent precision measurement on H0 in flat ΛCDM cosmology from the single lens RXJ1131−1231, and can be expected to yield an H0 measure with ≤2.0 per cent uncertainty, if similar gains in precision can be reached for two additional lens systems. Moreover, the angular diameter distance (Dd) to RXJ1131−1231 can be constrained with 2.4 per cent precision, providing two distance measurements from a single lens system, which is extremely powerful to further constrain the matter density (Ωm). The measurement accuracy of Dd, however, is highly sensitive to any systematics in the measurement of the stellar kinematics. For both distance measurements, we strongly advise to probe a large set of physically motivated lens potentials in the future, to minimize the systematic errors associated with the lens mass parametrization.

Details

show
hide
Language(s):
 Dates: 2020-02-27
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1093/mnras/staa498
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Notices of the Royal Astronomical Society
  Other : Mon. Not. R. Astron. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Oxford University Press
Pages: - Volume / Issue: 493 (4) Sequence Number: - Start / End Page: 4783 - 4807 Identifier: ISSN: 1365-8711
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000024150