Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction

Luo, F., Roy, A. J., Silvioli, L., Cullen, D. A., Zitolo, A., Sougrati, M. T., et al. (2020). P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 19(11), 1215-1223. doi:10.1038/s41563-020-0717-5.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
SnNC MAIN_20 05 2020-FINAL REVISION.pdf (beliebiger Volltext), 891KB
Name:
SnNC MAIN_20 05 2020-FINAL REVISION.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
Springer Nature
Lizenz:
-
:
SnNC_SI_23-06-2020_FINAL_REVISION_2_FD.pdf (Ergänzendes Material), 2MB
Name:
SnNC_SI_23-06-2020_FINAL_REVISION_2_FD.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2020-05-14 13-07 License to Publish form.pdf (Verlagsvertrag), 385KB
 
Datei-Permalink:
-
Name:
2020-05-14 13-07 License to Publish form.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Luo, Fang1, Autor
Roy, Aaron J.2, Autor
Silvioli, Luca3, 4, Autor
Cullen, David A.5, Autor
Zitolo, Andrea6, Autor
Sougrati, M. T.2, Autor
Oǧuz, Ismail Can2, Autor
Mineva, Tsonka2, Autor
Teschner, Detre7, 8, Autor           
Wagner, Stephan9, Autor
Wen, Ju1, Autor
Dionigi, Fabio1, Autor
Kramm, Ulrike Ingrid9, Autor
Rossmeisl, Jan3, Autor
Jaouen, Frédéric2, Autor
Strasser, Peter1, Autor
Affiliations:
1Department of Chemistry, The Electrochemical Energy, Catalysis and Material Science Laboratory, Chemical Engineering Division, Technical University Berlin, Berlin, Germany, ou_persistent22              
2ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France, ou_persistent22              
3Nano-Science Center, Department of Chemistry, University Copenhagen, Copenhagen, Denmark, ou_persistent22              
4Seaborg Technologies, Copenhagen, Denmark, ou_persistent22              
5Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States, ou_persistent22              
6Synchrotron SOLEIL, L’orme des Merisiers, BP 48, Saint Aubin, Gif-sur-Yvette, France, ou_persistent22              
7Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              
8Department of Heterogeneous Reaction, Max-Planck-Institute for Chemical Energy Conversion, Berlin, Germany, ou_persistent22              
9Department of Chemistry and Department of Materials and Earth Sciences, Graduate School of Excellence Energy Science and Engineering, Technical University Darmstadt, Darmstadt, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen–air fuel cell power density. The SnNC-NH3 catalysts displayed a 40–50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. A range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(iv)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen–air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today’s state-of-the-art Fe-based catalysts.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-02-282020-05-252020-07-132020-11
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41563-020-0717-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Kurztitel : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Pub. Group
Seiten: 10 Band / Heft: 19 (11) Artikelnummer: - Start- / Endseite: 1215 - 1223 Identifikator: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000