Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers

Engemann, D. A., Kozynets, O., Sabbagh, D., Lemaître, G., Varoquaux, G., Liem, F., et al. (2020). Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers. eLife, 9: e54055. doi:10.7554/eLife.54055.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
Engemann_2020.pdf (Verlagsversion), 10MB
Name:
Engemann_2020.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Engemann, Denis A.1, 2, Autor           
Kozynets, Oleh1, Autor
Sabbagh, David1, 3, 4, Autor
Lemaître, Guillaume1, Autor
Varoquaux, Gael1, Autor
Liem, Franz5, Autor           
Gramfort, Alexandre1, Autor
Affiliations:
1Université Paris-Saclay, Palaiseau, France, ou_persistent22              
2Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, Leipzig, DE, ou_634549              
3Université Paris Diderot, France, ou_persistent22              
4Department of Anaesthesiology and Critical Care, Hôpital Lariboisière, Paris, France, ou_persistent22              
5University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Switzerland, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Aging; Biomarker; Human; Human biology; Machine learning; Magnetic resonance imaging; Magnetoencephalogrphy; Medicine; Neuroscience; Oscillations
 Zusammenfassung: Electrophysiological methods, that is M/EEG, provide unique views into brain health. Yet, when building predictive models from brain data, it is often unclear how electrophysiology should be combined with other neuroimaging methods. Information can be redundant, useful common representations of multimodal data may not be obvious and multimodal data collection can be medically contraindicated, which reduces applicability. Here, we propose a multimodal model to robustly combine MEG, MRI and fMRI for prediction. We focus on age prediction as a surrogate biomarker in 674 subjects from the Cam-CAN dataset. Strikingly, MEG, fMRI and MRI showed additive effects supporting distinct brain-behavior associations. Moreover, the contribution of MEG was best explained by cortical power spectra between 8 and 30 Hz. Finally, we demonstrate that the model preserves benefits of stacking when some data is missing. The proposed framework, hence, enables multimodal learning for a wide range of biomarkers from diverse types of brain signals.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2020-05-19
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.7554/eLife.54055
PMID: 32423528
PMC: PMC7308092
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : SLAB ERC-StG-676943
Förderprogramm : Horizon 2020
Förderorganisation : European Research Council (ERC)
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : Inria
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : Inserm

Quelle 1

ausblenden:
Titel: eLife
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge : eLife Sciences Publications
Seiten: - Band / Heft: 9 Artikelnummer: e54055 Start- / Endseite: - Identifikator: ISSN: 2050-084X
CoNE: https://pure.mpg.de/cone/journals/resource/2050-084X