hide
Free keywords:
directional scattering, tight focusing, ultrafast nanolocalization, vectorbeams
Abstract:
Owing to their immediate relevance for high precision position sensors, a variety of different sub‐wavelength localization techniques has been developed in the past decades. However, many of these techniques suffer from low temporal resolution or require expensive detectors. Here, a method is presented that is based on the ultrafast detection of directionally scattered light with a quadrant photodetector operating at a large bandwidth, which exceeds the speed of most cameras. The directionality emerges due to the position dependent tailored excitation of a high‐refractive index nanoparticle with a tightly focused vector beam. A spatial resolution of 1.1nm and a temporal resolution of 8kHz is reached experimentally, which is not a fundamental but rather a technical limit. The detection scheme enables real‐time particle tracking and sample stabilization in many optical setups sensitive to drifts and vibrations.