English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs

Abbati, G., Wenk, P., Osborne, M. A., Krause, A., Schölkopf, B., & Bauer, S. (2019). AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs. In K. Chaudhuri, & R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning (pp. 1-10). PMLR. Retrieved from http://proceedings.mlr.press/v97/abbati19a.html.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Abbati, Gabriele1, Author
Wenk, Philippe1, Author
Osborne, Michael A.1, Author
Krause, Andreas1, Author
Schölkopf, Bernhard2, Author              
Bauer, Stefan2, Author              
Affiliations:
1External Organizations, ou_persistent22              
2Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              

Content

show
hide
Free keywords: Abt. Schölkopf
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Abbatietal_icml_2019
URI: http://proceedings.mlr.press/v97/abbati19a.html
 Degree: -

Event

show
hide
Title: 36th International Conference on Machine Learning (ICML)
Place of Event: Long Beach, CA
Start-/End Date: 2019-06-09 - 2019-06-15

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the 36th International Conference on Machine Learning
Source Genre: Proceedings
 Creator(s):
Chaudhuri, Kamalika1, Editor
Salakhutdinov, Ruslan1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: PMLR
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 1 - 10 Identifier: URI: http://proceedings.mlr.press/v97/

Source 2

show
hide
Title: Proceedings of Machine Learning Research (PMLR)
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: PMLR
Pages: - Volume / Issue: 97 Sequence Number: - Start / End Page: - Identifier: ISSN: 2640-3498