English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effective 1D Time-Dependent Schrödinger Equations for 3D Geometrically Correlated Systems

Pandey, D., Oriols, X., & Albareda Piquer, G. (2020). Effective 1D Time-Dependent Schrödinger Equations for 3D Geometrically Correlated Systems. Materials, 13(13): 3033. doi:10.3390/ma13133033.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-DCA0-D Version Permalink: http://hdl.handle.net/21.11116/0000-0006-DCA1-C
Genre: Journal Article

Files

show Files
hide Files
:
materials-13-03033-v2.pdf (Publisher version), 806KB
Name:
materials-13-03033-v2.pdf
Description:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
© by the authors. Licensee MDPI, Basel, Switzerland.

Locators

show
hide
Locator:
https://dx.doi.org/10.3390/ma13133033 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Pandey, D.1, Author
Oriols, X.1, Author
Albareda Piquer, G.2, 3, Author              
Affiliations:
1Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, ou_persistent22              
2Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
3Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, ou_persistent22              

Content

show
hide
Free keywords: nanojunction; constriction; quantum electron transport; quantum confinement; dimensionalityreduction; stochastic Schrödinger equations; geometric correlations
 Abstract: The so-called Born–Huang ansatz is a fundamental tool in the context of ab-initio molecular dynamics, viz., it allows effectively separating fast and slow degrees of freedom and thus treating electrons and nuclei with different mathematical footings. Here, we consider the use of a Born–Huang-like expansion of the three-dimensional time-dependent Schrödinger equation to separate transport and confinement degrees of freedom in electron transport problems that involve geometrical constrictions. The resulting scheme consists of an eigenstate problem for the confinement degrees of freedom (in the transverse direction) whose solution constitutes the input for the propagation of a set of coupled one-dimensional equations of motion for the transport degree of freedom (in the longitudinal direction). This technique achieves quantitative accuracy using an order less computational resources than the full dimensional simulation for a typical two-dimensional geometrical constriction and upto three orders for three-dimensional constriction.

Details

show
hide
Language(s): eng - English
 Dates: 2020-05-102020-07-012020-07-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3390/ma13133033
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : 785219
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)
Project name : -
Grant ID : 765426
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)
Project name : -
Grant ID : 752822
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Materials
  Abbreviation : Materials
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Basel : MDPI
Pages: - Volume / Issue: 13 (13) Sequence Number: 3033 Start / End Page: - Identifier: ISSN: 1996-1944
CoNE: https://pure.mpg.de/cone/journals/resource/1996-1944