English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Redesign of substrate selection in glycopeptide antibiotic biosynthesis enables effective formation of alternate peptide backbones

Kaniusaite, M., Kittilä, T., Goode, R. J. A., Schittenhelm, R. B., & Cryle, M. J. (2020). Redesign of substrate selection in glycopeptide antibiotic biosynthesis enables effective formation of alternate peptide backbones. ACS Chemical Biology, 15(9), 2444-2455. doi:10.1021/acschembio.0c00435.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0006-DF8E-0 Version Permalink: http://hdl.handle.net/21.11116/0000-0007-D37B-1
Genre: Journal Article

Files

show Files
hide Files
:
ACSChemBiol_15_2020_2444.pdf (Any fulltext), 7MB
 
File Permalink:
-
Name:
ACSChemBiol_15_2020_2444.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
ACSChemBiol_15_2020_2444_Suppl.pdf (Supplementary material), 6MB
 
File Permalink:
-
Name:
ACSChemBiol_15_2020_2444_Suppl.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
Description:
-
Description:
-

Creators

show
hide
 Creators:
Kaniusaite, Milda, Author
Kittilä, Tiia1, Author              
Goode, Robert J. A., Author
Schittenhelm, Ralf B., Author
Cryle, Max J., Author
Affiliations:
1Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: Peptides and proteins, Monomers, Biosynthesis, Assays, Selectivity
 Abstract: Nonribosomal peptide synthesis is capable of utilizing a wide range of amino acid residues due to the selectivity of adenylation (A)-domains. Changing the selectivity of A-domains could lead to new bioactive nonribosomal peptides, although remodeling efforts of A-domains are often unsuccessful. Here, we explored and successfully reengineered the specificity of the module 3 A-domain from glycopeptide antibiotic biosynthesis to change the incorporation of 3,5-dihydroxyphenylglycine into 4-hydroxyphenylglycine. These engineered A-domains remain selective in a functioning peptide assembly line even under substrate competition conditions and indicate a possible application of these for the future redesign of GPA biosynthesis.

Details

show
hide
Language(s): eng - English
 Dates: 2020-05-292020-08-142020-08-142020-09-18
 Publication Status: Published in print
 Pages: 12
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Chemical Biology
  Abbreviation : ACS Chem. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 15 (9) Sequence Number: - Start / End Page: 2444 - 2455 Identifier: ISSN: 1554-8929
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000035040