Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Café latte: spontaneous layer formation in laterally cooled double diffusive convection

Chong, K. L., Yang, R., Wang, Q., Verzicco, R., & Lohse, D. (2020). Café latte: spontaneous layer formation in laterally cooled double diffusive convection. Journal of Fluid Mechanics, 900: R6. doi:10.1017/jfm.2020.565.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chong, Kai Leong, Autor
Yang, Rui, Autor
Wang, Qi, Autor
Verzicco, Roberto, Autor
Lohse, Detlef1, Autor           
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In the preparation of café latte, spectacular layer formation can occur between the espresso
shot in a glass of milk and the milk itself. Xue et al. (Nat. Commun., vol. 8, 2017, pp. 1–6)
showed that the injection velocity of espresso determines the depth of coffee–milk mixture.
After a while, when a stable stratification forms in the mixture, the layering process can
be modelled as a double diffusive convection system with a stably stratified coffee–milk
mixture cooled from the side. More specifically, we perform (two-dimensional) direct
numerical simulations of laterally cooled double diffusive convection for a wide parameter
range, where the convective flow is driven by a lateral temperature gradient while
stabilized by a vertical concentration gradient. Depending on the strength of stabilization
as compared to the thermal driving, the system exhibits different flow regimes. When
the thermal driving force dominates over the stabilizing force, the flow behaves like
vertical convection in which a large-scale circulation develops. However, with increasing
strength of the stabilizing force, a meta-stable layered regime emerges. Initially, several
vertically-stacked convection rolls develop, and these well-mixed layers are separated by
sharp interfaces with large concentration gradients. The initial thickness of these emerging
layers can be estimated by balancing the work exerted by thermal driving and the required
potential energy to bring fluid out of its equilibrium position in the stably stratified fluid.
In the layered regime, we further observe successive layer merging, and eventually only
a single convection roll remains. We elucidate the following merging mechanism: as
weakened circulation leads to accumulation of hot fluid adjacent to the hot sidewall, larger buoyancy forces associated with hotter fluid eventually break the layer interface. Then
two layers merge into a larger layer, and circulation establishes again within the merged structure.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-08-112020-10-10
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1017/jfm.2020.565
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Fluid Mechanics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 12 Band / Heft: 900 Artikelnummer: R6 Start- / Endseite: - Identifikator: ISSN: 0022-1120
ISSN: 1469-7645