ausblenden:
Schlagwörter:
single-photon sources quantum emitters photonic crystals photon extraction circular dielectric grating optical antenna
Zusammenfassung:
We propose a novel antenna structure that funnelssingle photons from a single emitter with unprecedented efficiencyinto a low-divergence fundamental Gaussian mode. Our devicerelies on the concept of creating an omnidirectional photonicbandgap to inhibit unwanted large-angle emission and to enhancesmall-angle defect-guided-mode emission. The new photoncollection strategy is intuitively illustrated, rigorously verified,and optimized by implementing an efficient, body-of-revolution,finite-difference, time-domain method for in-plane dipole emitters.We investigate a few antenna designs to cover various boundaryconditions posed by fabrication processes or material restrictions and theoretically demonstrate that collection efficiencies into thefundamental Gaussian mode exceeding 95% are achievable. Our antennas are broadband, insensitive to fabrication imperfections andcompatible with a variety of solid-state emitters such as organic molecules, quantum dots, and defect centers in diamond.Unidirectional and low-divergence Gaussian-mode emission from a single emitter may enable the realization of a variety of photonicquantum computer architectures as well as highly efficient light−matter interfaces.