Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  On the Existence of Shear-current Effects in Magnetized Burgulence

Käpylä, M. J., Alvarez Vizoso, J., Rheinhardt, M., Brandenburg, A., Käpylä, P., & Singh, N. K. (2020). On the Existence of Shear-current Effects in Magnetized Burgulence. The Astrophysical Journal, 905(2): 179. doi:10.3847/1538-4357/abc1e8.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Käpylä, Maarit J.1, 2, Autor           
Alvarez Vizoso, Javier1, Autor           
Rheinhardt, Matthias, Autor
Brandenburg, Axel, Autor
Käpylä, Petri, Autor
Singh, Nishant K.1, Autor           
Affiliations:
1Max Planck Research Group and ERC Consolidator Grant: Solar and Stellar Dynamos - SOLSTAR, Max Planck Institute for Solar System Research, Max Planck Society, ou_2265638              
2Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Magnetohydrodynamical simulations ; Astrophysical magnetism
 Zusammenfassung: The possibility of explaining shear flow dynamos by a magnetic shear-current (MSC) effect is examined via numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor η . In our setup, a negative sign of its component η yx is necessary for coherent dynamo action by the SC effect. To be able to measure turbulent transport coefficients from systems with magnetic background turbulence, we present an extension of the test-field method (TFM) applicable to our setup where the pressure gradient is dropped from the momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is related to Burgers' equation and the resulting flows are referred to as magnetized burgulence. We use both stochastic kinetic and magnetic forcings to mimic cases without and with simultaneous small-scale dynamo action. When we force only kinetically, negative η yx are obtained with exponential growth in both the radial and azimuthal mean magnetic field components. Using magnetokinetic forcing, the field growth is no longer exponential, while NLTFM yields positive η yx . By employing an alternative forcing from which wavevectors whose components correspond to the largest scales are removed, the exponential growth is recovered, but the NLTFM results do not change significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent α and SC effects shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We find no evidence for MSC-effect-driven dynamos in our

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2006.05661
DOI: 10.3847/1538-4357/abc1e8
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Astrophysical Journal
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol; Vienna : IOP Publishing; IAEA
Seiten: - Band / Heft: 905 (2) Artikelnummer: 179 Start- / Endseite: - Identifikator: ISSN: 0004-637X
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215_3