日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Unsupervised Learning for Thermophysical Analysis on the Lunar Surface

Moseley, B., Bickel, V. T., Burelbach, J., & Relatores, N. (2020). Unsupervised Learning for Thermophysical Analysis on the Lunar Surface. The Planetary Science Journal, 1:. doi:10.3847/PSJ/ab9a52.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0006-F590-2 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0006-F591-1
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Moseley, Ben, 著者
Bickel, Valentin Tertius1, 著者           
Burelbach, Jérôme, 著者
Relatores, Nicole, 著者
所属:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

内容説明

表示:
非表示:
キーワード: The Moon ; Lunar composition ; Convolutional neural networks
 要旨: We investigate the use of unsupervised machine learning to understand and extract valuable information from thermal measurements of the lunar surface. We train a variational autoencoder (VAE) to reconstruct observed variations in lunar surface temperature from over 9 yr of Diviner Lunar Radiometer Experiment data and in doing so learn a fully data-driven thermophysical model of the lunar surface. The VAE defines a probabilistic latent model that assumes the observed surface temperature variations can be described by a small set of independent latent variables and uses a deep convolutional neural network to infer these latent variables and to reconstruct surface temperature variations from them. We find it is able to disentangle five different thermophysical processes from the data, including (1) the solar thermal onset delay caused by slope aspect, (2) effective albedo, (3) surface thermal conductivity, (4) topography and cumulative illumination, and (5) extreme thermal anomalies. Compared to traditional physics-based modeling and inversion, our method is extremely efficient, requiring orders of magnitude less computational power to invert for underlying model parameters. Furthermore our method is physics-agnostic and could therefore be applied to other space exploration data sets, immediately after the data is collected and without needing to wait for physical models to be developed. We compare our approach to traditional physics-based thermophysical inversion and generate new, VAE-derived global thermal anomaly maps. Our method demonstrates the potential of artificial intelligence-driven techniques to complement existing physical models as well as for accelerating lunar and space exploration in general.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2020
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.3847/PSJ/ab9a52
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: The Planetary Science Journal
  その他 : Planet. Sci. J.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: IOP Publishing
ページ: - 巻号: 1 通巻号: 32 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 2632-3338
CoNE: https://pure.mpg.de/cone/journals/resource/2632-3338